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ABSTRACT. In this paper we propose new primal-dual interior point algorithms for P∗(κ)
linear complementarity problems based on a new class of kernel functions which contains
the kernel function in [8] as a special case. We show that the iteration bounds are O((1 +

2κ)n
9
14 log nµ0

ε
) for large-update and O((1 + 2κ)

√
n log nµ0

ε
) for small-update methods,

respectively. This iteration complexity for large-update methods improves the iteration com-
plexity with a factor n

5
14 when compared with the method based on the classical logarithmic

kernel function. For small-update, the iteration complexity is the best known bound for such
methods.

1. INTRODUCTION

In this paper, we consider the linear complementarity problem(LCP) as follows:




s = Mx + q,

xs = 0,

x ≥ 0, s ≥ 0,

(1.1)

where x, s, q ∈ Rn and M ∈ Rn×n is a P∗(κ) matrix.
Primal-dual interior point method(IPM) is one of the most efficient numerical methods for

various optimization problems.([14]) Even though significant research has been devoted to this
topic, the influence on nonlinear programming theory and practice has to be studied. Linear
complementarity problems(LCPs) are one of the fundamental problems in mathematical pro-
gramming and have many applications in science, economics, and engineering.([7])
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Most of polynomial-time interior point algorithms are based on the logarithmic kernel func-
tion. Peng et al.([10] - [12]) proposed a new variant of IPMs based on self-regular kernel func-
tions for linear optimization(LO) problems and extended to semidefinite optimization prob-
lems and second order cone optimization problems. They improved the complexity result for
large-update methods up to O(

√
n log n log n

ε ) based on a specific self-regular kernel function.
This is the best complexity result for such methods. Bai et al.([3], [4]) proposed new primal-
dual interior point methods(IPMs) for LO problems based on eligible kernel functions and the
scheme for analyzing the algorithm based on four conditions on the kernel function.([4]) They
simplified the analysis and obtained the best known complexity result for a specific eligible ker-
nel function.([4]) Cho([5]) and Cho et al.([6]) extended these algorithms to P∗(κ) LCPs and
obtained the similar complexity results. Recently, Amini et al.([2]) introduced a generalized
version of the kernel function in [4] and extended the algorithm in [4] to P∗(κ) LCPs based
on this kernel function. They obtainedO(

(1 + 2κ)
√

n log n log(log n) log n
ε

)
for large-update

methods.
Motivated by their works, we propose new primal-dual IPMs for P∗(κ) LCPs based on

a new class of kernel functions which contains the kernel function in [8] as a special case.

We obtainedO(
(1+2κ)n

p+2
2(p+1) log nµ0

ε

)
andO((1+2κ)

√
n log nµ0

ε ) iteration complexity for
large-update and small-update IPMs, respectively. Taking p = 5

2 , τ = O(n), and θ = Θ(1), we
get the O(

(1 + 2κ)n
9
14 log nµ0

ε

)
iteration complexity for large-update method which improves

the iteration complexity with a factor n
9
14 when compared with the method based the classical

logarithmic kernel function. For small-update methods this is the best known complexity result
so far.

The paper is organized as follows. In Section 2 we give a generic IPM and recall some basic
concepts for LCP. In Section 3 we propose a new interior point algorithm based a new class
of kernel functions and show its properties which are essential to the complexity analysis. In
Section 4 we compute the iteration bound for the algorithm based on kernel function.

We use the following notations throughout the paper. Rn
+ and Rn

++ denote the set of n-
dimensional nonnegative vectors and positive vectors, respectively. For x, s ∈ Rn, xmin and
xs denote the smallest component of the vector x and the componentwise product of the vec-
tors x and s, respectively. e denotes the n-dimensional vector of ones. For any µ > 0, we
define v :=

√
xs/µ, v−1 :=

√
µe/(xs) whose i-th components are

√
xisi/µ and

√
µ/(xisi),

respectively. We denote X the diagonal matrix from a vector x, i.e., X = diag(x). I denotes
the index set, e.g. I = {1, 2, · · ·, n}. For f(x), g(x) : R++ → R++, f(x) = O(g(x)) if
f(x) ≤ c1g(x) for some positive constant c1 and f(x) = Θ(g(x)) if c2g(x) ≤ f(x) ≤ c3g(x)
for some positive constants c2 and c3.

2. PRELIMINARIES

In this section we introduce some basic concepts and a generic primal-dual interior point
algorithm.
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Definition 2.1. ([9]) Let κ ≥ 0. P∗(κ) is the class of matrices M satisfying

(1 + 4κ)
∑

i∈I+(ξ)

ξi[Mξ]i +
∑

i∈I−(ξ)

ξi[Mξ]i ≥ 0, ξ ∈ Rn,

where [Mξ]i denotes the i-th component of the vector Mξ and

I+(ξ) = {i ∈ I : ξi[Mξ]i ≥ 0}, I−(ξ) = {i ∈ I : ξi[Mξ]i < 0}.
Lemma 2.2. ([9]) Let M ∈ Rn×n be a P∗(κ) matrix and x, s ∈ Rn

++. Then for all c ∈ Rn

the system {
−M∆x + ∆s = 0,

S∆x + X∆s = c

has a unique solution (∆x,∆s).

The basic idea of primal-dual IPMs is to replace the second equation in (1.1) by the param-
eterized equation xs = µe with µ > 0 as follows:




s = Mx + q,

xs = µe,

x > 0, s > 0.

(2.1)

Without loss of generality, we assume that (1.1) is strictly feasible, i.e., there exists a (x0, s0)
such that s0 = Mx0 + q, x0 > 0, s0 > 0. For this, the reader refer to [9]. Since M is a P∗(κ)
matrix and (1.1) is strictly feasible, the system (2.1) has a unique solution for each µ > 0.([9])
We denote the solution (x(µ), s(µ)), µ > 0, which is called the µ-center. The set of µ-centers
(µ > 0) is the central path of (1.1). IPMs follow the central path approximately and approach
the solution of (1.1) as µ goes to zero.
For given (x, s) := (x0, s0) by applying Newton method to the system (2.1) we have the
following Newton system: {

−M∆x + ∆s = 0,

S∆x + X∆s = µe− xs.
(2.2)

By Lemma 2.2, the system (2.2) has a unique search direction (∆x,∆s). By taking a step
along the search direction (∆x,∆s), one constructs a new iterate (x+, s+), where

x+ = x + α∆x, s+ = s + α∆s,

for some α ≥ 0. For the motivation of the new algorithm we define the scaled vectors:

v :=
√

xs

µ
, d :=

√
x

s
, dx :=

v∆x

x
, ds :=

v∆s

s
. (2.3)

Using (2.3), we can rewrite the system (2.2) as follows:{
−M̄dx + ds = 0,

dx + ds = v−1 − v,
(2.4)
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where M̄ := DMD and D := diag(d). Note that the right side of the second equation in (2.4)
equals the negative gradient of the logarithmic barrier function Ψl(v), i.e., dx+ds = −∇Ψl(v),

Ψl(v) :=
n∑

i=1

ψl(vi), ψl(t) =
t2 − 1

2
− log t, t > 0. (2.5)

We call ψl the classical logarithmic kernel function of Ψl(v).
The generic interior point algorithm works as follows. Assume that we are given a strictly

feasible point (x, s) which is in a τ -neighborhood of the given µ-center. Then we decrease
µ to µ+ = (1 − θ)µ, for some fixed θ ∈ (0, 1) and solve the Newton system (2.2) to obtain
the unique search direction. The positivity condition of a new iterate is ensured with the right
choice of the step size α which is defined by some line search rule. This procedure is repeated
until we find a new iterate (x+, s+) that is in a τ -neighborhood of the µ+-center and then we
let µ := µ+ and (x, s) := (x+, s+). Then µ is again reduced by the factor 1− θ and we solve
the Newton system targeting at the new µ+-center, and so on. This process is repeated until µ
is small enough, say until nµ < ε.

Generic Primal-Dual Algorithm

Input:
A threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
(x0, s0) and µ0 > 0 such that Ψl(x0, s0, µ0) ≤ τ.

begin
x := x0; s := s0; µ := µ0;
while nµ > ε do
begin

µ := (1− θ)µ;
while Ψl(v) > τ do
begin

Solve the system (2.2) for ∆x and ∆s;
Determine a step size α;
x := x + α∆x;
s := s + α∆s;
v :=

√
xs
µ ;

end
end

end

When τ = O(n) and θ = Θ(1), we call the algorithm a large-update method. Taking
τ = O(1) and θ = Θ( 1√

n
), we call the algorithm a small-update method.



INTERIOR POINT METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS 193

3. THE KERNEL FUNCTION

In this section we define a new class of kernel functions and give its properties which are
essential to our analysis. We call ψ : R++ → R+ a kernel function if ψ is twice differentiable
and satisfies the following conditions:

ψ′(1) = ψ(1) = 0,

ψ′′(t) > 0, t > 0,

lim
t→0+

ψ(t) = lim
t→∞ψ(t) = ∞.

(3.1)

Now we consider a new class of kernel function ψ(t) as follows:

ψ(t) := 8t2 − 11t + 1 +
2
tp
− (5− 2p) log t,

7
15
≤ p ≤ 5

2
, t > 0. (3.2)

For ψ(t) we have the first three derivatives as follows:

ψ′(t) = 16t− 11− 2pt−p−1 − (5− 2p)t−1,

ψ′′(t) = 16 + 2p(p + 1)t−p−2 + (5− 2p)t−2,

ψ′′′(t) = −2p(p + 1)(p + 2)t−p−3 − 2(5− 2p)t−3.

(3.3)

From (3.1) and (3.3), ψ(t) is clearly a kernel function and

ψ′′(t) > 16,
7
15
≤ p ≤ 5

2
, t > 0. (3.4)

In this paper, we replace the function Ψl(v) in (2.5) with the function Ψ(v) as follows:

dx + ds = −∇Ψ(v), (3.5)

where Ψ(v) =
∑n

i=1 ψ(vi), ψ(t) is defined in (3.2) and assume that τ ≥ 1. Hence the new
search direction (∆x,∆s) is obtained by solving the following modified Newton-system:

{
−M∆x + ∆s = 0,

S∆x + X∆s = −µv∇Ψ(v).
(3.6)

Since−µv∇Ψ(v) = −µv
(
16v − 11− 2pv−p−1 − (5− 2p)v−1

)
, the second equation in (3.6)

can be written as

S∆x + X∆s = −16xs + 11
√

µxs + 2p
√

µ2+p(xs)−p + (5− 2p)µ.

Since Ψ(v) is strictly convex and minimal at v = e, we have

Ψ(v) = 0 ⇔ v = e ⇔ x = x(µ), s = s(µ).

We use Ψ(v) as the proximity function. Also, we define norm-based proximity measure δ(v)
as follows:

δ(v) :=
1
2
||∇Ψ(v)|| = 1

2
||dx + ds||. (3.7)

In the following we give technical properties of ψ(t) which are essential to our analysis.
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Lemma 3.1. Let ψ(t) be as defined in (3.2). Then we have the following properties:
(i) ψ(t) is exponentially convex, for all t > 0,
(ii) ψ′′(t) is monotonically decreasing, for all t > 0,
(iii) tψ′′(t)− ψ′(t) > 0, for all t > 0,
(iv) ψ

′′
(t)ψ

′
(βt)− βψ

′
(t)ψ

′′
(βt) > 0, for all t > 1 and β > 1.

Proof: For (i): By Lemma 2.1.2 in [12], it suffices to show that ψ(t) satisfies tψ′′(t)+ψ′(t) ≥
0 for all t > 0. Using (3.3), we have for 7

15 ≤ p ≤ 5
2

tψ′′(t) + ψ′(t) = 32t− 11 + 2p2t−p−1.

Let g(p, t) = 32t − 11 + 2p2t−p−1. Then gt(p, t) = 32 − 2p2(p + 1)t−p−2 and gtt(p, t) =
2p2(p + 1)(p + 2)t−p−3 > 0, t > 0. Letting gt(p, t) = 0, we have t = (p2(p+1)

16 )
1

p+2 . Since

g(p, t) is strictly convex in t, g(p, t) has a global minimum at t∗ = (p2(p+1)
16 )

1
p+2 , i.e., g(p, t∗) ≤

g(p, t), for 7
15 ≤ p ≤ 5

2 and t > 0. For 7
15 ≤ p ≤ 5

2 and t := t∗, we have

gp(p, t∗) = 2p(t∗)−p−1(2− p log t∗)

= 2p

(
p2(p + 1)

16

)− p+1
p+2

(
2− p

p + 2
log

(p2(p + 1)
16

))
> 0,

since log(p2(p+1)
16 ) < 1 for 7

15 ≤ p ≤ 5
2 . This implies that g( 7

15 , t∗) ≤ g(p, t∗), for 7
15 ≤ p ≤ 5

2 .
Hence g( 7

15 , t∗) is the smallest value for 7
15 ≤ p ≤ 5

2 and t > 0. Since g( 7
15 , t∗) > 0.0111, we

have the result.
For (ii): From (3.3), it is clear.
For (iii): Using (3.3), we have

tψ′′(t)− ψ′(t) = 11 + 2p(p + 2)t−p−1 + 2(5− 2p)t−1 > 0.

For (iv): By Lemma 2.4 in [4], it suffices to show that ψ(t) satisfies Lemma 3.1 (ii) and (iii).
This completes the proof. 2

Lemma 3.2. For ψ(t) we have
(i) 8(t− 1)2 ≤ ψ(t) ≤ 1

32(ψ′(t))2, t > 0,

(ii) ψ(t) ≤ 21+2p2

2 (t− 1)2, t ≥ 1.

Proof: For (i): Using the first condition of (3.1) and (3.4), we have

ψ(t) =
∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ ≥ 16

∫ t

1

∫ ξ

1
dζdξ = 8(t− 1)2,

which proves the first inequality. The second inequality is obtained as follows:

ψ(t) =
∫ t

1

∫ ξ

1
ψ′′(ζ)dζdξ ≤ 1

16

∫ t

1

∫ ξ

1
ψ′′(ξ)ψ′′(ζ)dζdξ

=
1
16

∫ t

1
ψ′′(ξ)ψ′(ξ)dξ =

1
16

∫ t

1
ψ′(ξ)dψ′(ξ) =

1
32

(ψ′(t))2.
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For (ii): Using Taylor’s theorem, ψ(1) = ψ
′
(1) = 0, ψ

′′′
< 0, and ψ

′′
(1) = 21 + 2p2, we

have

ψ(t) = ψ(1) + ψ
′
(1)(t− 1) +

1
2
ψ
′′
(1)(t− 1)2 +

1
3!

ψ
′′′

(ξ)(ξ − 1)3

=
1
2
ψ
′′
(1)(t− 1)2 +

1
3!

ψ
′′′

(ξ)(ξ − 1)3

<
21 + 2p2

2
(t− 1)2,

for some ξ, 1 ≤ ξ ≤ t. This completes the proof. 2

Remark 3.3. Define ψb(t) = −11t + 9 + 2
tp − (5− 2p) log t. Then ψ(t) := 8t2 − 8 + ψb(t).

ψ′b(t) = −11− 2p
tp+1 − 5−2p

t and ψ′′b (t) = 2p(p+1)
tp+2 + 5−2p

t2
> 0. Hence, ψ′(t) is monotonically

increasing with respect to t.

Lemma 3.4. Let % : [0,∞) → [1,∞) be the inverse function of ψ(t), for t ≥ 1, ρ and
ρ : [0,∞) → (0, 1], the inverse functions of −1

2ψ′(t) and −ψb
′(t), for 0 < t ≤ 1, respectively.

Then we have
(i)

√
r
8 + 1 ≤ %(r) ≤ 1 +

√
r
8 , r ≥ 0,

(ii) ρ(z) ≥ ρ(16 + 2z), z ≥ 0,

(iii) ρ(u) = ( 2p
u−16+2p)

1
p+1 , u ≥ 16.

Proof: For (i): Letting r = ψ(t) for t ≥ 1, we have %(r) = t. By the definition of ψ(t),
r = 8t2 − 11t + 1 + 2

tp − (5− 2p) log t. This implies

8t2 = r + 11t− 1− 2
tp

+ (5− 2p) log t ≥ r + 8.

Hence we have

t = %(r) ≥
√

r

8
+ 1.

Using Lemma 3.2 (i), we have r = ψ(t) ≥ 8(t− 1)2. Then we have

t = %(r) ≤ 1 +
√

r

8
.

For (ii): Let z = −1
2ψ′(t), for 0 < t ≤ 1. By Remark 3.3, we have

−2z = ψ′(t) = 16t + ψb
′(t).

This implies that
−ψb

′(t) = 16t + 2z ≤ 16 + 2z.

Using Remark 3.3 and t = ρ(z), we have

t = ρ(z) ≥ ρ(16 + 2z).



196 YOU-YOUNG CHO AND GYEONG-MI CHO

For (iii): Letting u = −ψb
′(t), for 0 < t ≤ 1, we have ρ(u) = t. By the definition of−ψb

′(t),
we have u = 11 + 2p

tp+1 + 5−2p
t ≥ 16, 0 < t ≤ 1. This implies

2p

tp+1
= u− 11− 5− 2p

t
≤ u− 16 + 2p.

Hence we have

t = ρ(u) ≥
(

2p

u− 16 + 2p

) 1
p+1

, u ≥ 16.

2

Corollary 3.5. Let ρ be as defined in Lemma 3.4. Then we have

ρ(z) ≥
(

p

z + p

) 1
p+1

, z ≥ 0.

Proof: Using Lemma 3.3 (ii) and (iii), we have

ρ(z) ≥ ρ(16 + 2z) =
( p

z + p

) 1
p+1

.

This completes the proof. 2

Lemma 3.6. (Theorem 3.2 in [3]) Let % be as defined in Lemma 3.4. Then we have

Ψ(βv) ≤ nψ

(
β%

(
Ψ(v)

n

))
, v ∈ Rn

++, β ≥ 1.

In the following we obtain an estimate for the effect of a µ-update on the value of Ψ(v).

Theorem 3.7. Let 0 ≤ θ < 1 and v+ = v√
1−θ

. If Ψ(v) ≤ τ, then we have

Ψ(v+) ≤ 21 + 2p2

2(1− θ)

(√
nθ +

√
τ

8

)2

.

Proof: Since 1√
1−θ

≥ 1 and %
(

Ψ(v)
n

)
≥ 1, we have

%
(

Ψ(v)
n

)
√

1−θ
≥ 1. Using Lemma 3.6 with

β = 1√
1−θ

, Lemma 3.2 (ii), Lemma 3.4 (i), and Ψ(v) ≤ τ , we have

Ψ(v+) ≤ nψ

(
1√

1− θ
%

(
Ψ(v)

n

))
≤ (21 + 2p2)n

2


%

(
Ψ(v)

n

)
√

1− θ
− 1




2

=
(21 + 2p2)n

2


%

(
Ψ(v)

n

)
−√1− θ

√
1− θ




2



INTERIOR POINT METHODS FOR LINEAR COMPLEMENTARITY PROBLEMS 197

≤ (21 + 2p2)n
2

(
1 +

√
τ
8n −

√
1− θ√

1− θ

)2

≤ (21 + 2p2)n
2

(
θ +

√
τ
8n√

1− θ

)2

=
21 + 2p2

2(1− θ)

(√
nθ +

√
τ

8

)2

,

where the last inequality holds from 1 −√1− θ = θ
1+
√

1−θ
≤ θ, 0 ≤ θ < 1. This completes

the proof. 2

Denote

Ψ̃0 :=
21 + 2p2

2(1− θ)

(√
nθ +

√
τ

8

)2

. (3.8)

Then Ψ̃0 is an upper bound for Ψ(v) during the process of the algorithm.

Remark 3.8. For large-update method with τ = O(n) and θ = Θ(1), Ψ̃0 = O(n) and for
small-update method with τ = O(1) and θ = Θ( 1√

n
), Ψ̃0 = O(1).

4. COMPLEXITY RESULT

In this section we compute a feasible step size and the decrease of the proximity function
during an inner iteration and give the complexity results of the algorithm. For fixed µ if we
take a step size α, then we have new iterates x+ = x + α∆x, s+ = s + α∆s. Using (2.3), we
have

x+ = x

(
e + α

∆x

x

)
= x

(
e + α

dx

v

)
=

x

v
(v + αdx)

and

s+ = s

(
e + α

∆s

s

)
= s

(
e + α

ds

v

)
=

s

v
(v + αds).

Thus we have

v+ =
√

x+s+

µ
=

√
(v + αdx)(v + αds).

Define for α > 0,
f(α) = Ψ(v+)−Ψ(v).

Then f(α) is the difference of proximities between a new iterate and a current iterate for fixed
µ. Using Lemma 3.1 (i), we have

Ψ(v+) = Ψ
(√

(v + αdx)(v + αds)
) ≤ 1

2
(Ψ(v + αdx) + Ψ(v + αds)).

Hence we have f(α) ≤ f1(α), where

f1(α) :=
1
2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v).

Obviously, we have
f(0) = f1(0) = 0.
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By taking the derivative of f1(α) with respect to α, we have

f ′1(α) =
1
2

n∑

i=1

(ψ′(vi + α[dx]i)[dx]i + ψ′(vi + α[ds]i)[ds]i),

where [dx]i and [ds]i denote the i-th components of the vectors dx and ds, respectively. Using
(3.5) and (3.7), we have

f ′1(0) =
1
2
∇Ψ(v)T (dx + ds) = −1

2
∇Ψ(v)T∇Ψ(v) = −2δ(v)2.

Differentiating f ′1(α) with respect to α, we have

f ′′1 (α) =
1
2

n∑

i=1

(
ψ′′(vi + α[dx]i)[dx]2i + ψ′′(vi + α[ds]i)[ds]2i

)
.

Since f ′′1 (α) > 0, f1(α) is strictly convex in α unless dx = ds = 0. Since M is a P∗(κ) matrix
and M∆x = ∆s from (3.6), for ∆x ∈ Rn,

(1 + 4κ)
∑

i∈I+

[∆x]i[∆s]i +
∑

i∈I−

[∆x]i[∆s]i ≥ 0,

where I+ = {i ∈ I : [∆x]i[∆s]i ≥ 0}, I− = I − I+. Since dxds = v2∆x∆s
xs = ∆x∆s

µ and
µ > 0, we have

(1 + 4κ)
∑

i∈I+

[dx]i[ds]i +
∑

i∈I−

[dx]i[ds]i ≥ 0.

Lemma 4.1. Let δ(v) be as defined in (3.7). Then we have

δ(v) ≥ 2
√

2Ψ(v).

Proof: Using (3.7) and Lemma 3.2 (i), we have

δ(v)2 =
1
4
||∇Ψ(v)||2 =

1
4

n∑

i=1

(ψ′(vi))2 ≥ 1
4

n∑

i=1

32ψ(vi) = 8Ψ(v).

Hence we have δ(v) ≥ 2
√

2Ψ(v). 2

Remark 4.2. Using Lemma 4.1 and the assumption Ψ(v) ≥ τ ≥ 1, we have

δ(v) ≥ 2
√

2Ψ(v) ≥ 2
√

2. (4.1)

For notational convenience we denote δ := δ(v) and Ψ := Ψ(v).

Lemma 4.3. (Modification of lemma 4.4 in [6]) f
′
1(α) ≤ 0 if α is satisfying

−ψ′(vmin − 2αδ
√

1 + 2κ) + ψ
′
(vmin) ≤ 2δ√

1 + 2κ
. (4.2)
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Lemma 4.4. (Modification of lemma 4.5 in [6]) Let ρ be as defined in Lemma 3.4. Then the
largest step size α satisfying (4.2) is given by

α̂ :=
1

2δ
√

1 + 2κ

(
ρ(δ)− ρ

(
(1 +

1√
1 + 2κ

)δ
))

.

Lemma 4.5. (Modification of lemma 4.6 in [6]) Let ρ and α̂ be as defined in Lemma 4.4. Then

α̂ ≥ 1

(1 + 2κ)ψ′′
(
ρ
(
(1 + 1√

1+2κ
)δ

)) .

Define

ᾱ :=
1

(1 + 2κ)ψ′′
(
ρ
(
(1 + 1√

1+2κ
)δ

)) . (4.3)

Then we have ᾱ ≤ α̂.

Lemma 4.6. (Lemma 1.3.3 in [12]) Suppose that h(t) is twice differentiable convex function
with

h(0) = 0, h′(0) < 0,

h(t) attains its (global) minimum at t∗ > 0, and h′′(t) is increasing with respect to t. Then for
any t ∈ [0, t∗],

h(t) ≤ th′(0)
2

.

Lemma 4.7. (Modification of lemma 4.8 in [6]) If the step size α is such that α ≤ ᾱ, then

f(α) ≤ −αδ2.

Theorem 4.8. Let ᾱ be as defined in (4.3). Then for a = 1 + 1√
1+2κ

and κ ≥ 0, we have

f(ᾱ) ≤ − 2
3p

2(p+1)

(1 + 2κ)L(p, a)
Ψ

p
2p+2 ,

where L(p, a) := 4
√

2 + 2p(p + 1)
(

1
2
√

2
+ a

p

) p+2
p+1 + (5− 2p)

(
1

2
√

2
+ a

p

) 2
p+1

.

Proof: Using Corollary 3.5, we have

ρ(aδ) ≥
(

p

aδ + p

) 1
p+1

. (4.4)

Using Lemma 4.7, (4.3), (4.4), and Lemma 3.1 (ii), we obtain

f(ᾱ) ≤ −ᾱδ2 = − δ2

(1 + 2κ)ψ′′
(
ρ(aδ)

) ≤ − δ2

(1 + 2κ)ψ′′
(( p

aδ+p

) 1
p+1

) . (4.5)
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Using (3.3) and (4.1), we have

ψ′′
(( p

aδ + p

) 1
p+1

)

= 16 + 2p(p + 1)
(
1 +

aδ

p

) p+2
p+1 + (5− 2p)

(
1 +

aδ

p

) 2
p+1

≤ 4
√

2δ + 2p(p + 1)
( δ

2
√

2
+

aδ

p

) p+2
p+1 + (5− 2p)

( δ

2
√

2
+

aδ

p

) 2
p+1

= 4
√

2δ + 2p(p + 1)
( 1

2
√

2
+

a

p

) p+2
p+1

δ
p+2
p+1 + (5− 2p)

( 1
2
√

2
+

a

p

) 2
p+1

δ
2

p+1

≤ L(p, a)δ
p+2
p+1 , (4.6)

where

L(p, a) := 4
√

2 + 2p(p + 1)
( 1

2
√

2
+

a

p

) p+2
p+1 + (5− 2p)

( 1
2
√

2
+

a

p

) 2
p+1

.

Using (4.5), (4.6), and Lemma 4.1, we have

f(ᾱ) ≤ − 1
(1 + 2κ)L(p, a)

δ
p

p+1 ≤ − 1
(1 + 2κ)L(p, a)

(2
√

2Ψ)
p

p+1

= − 2
3p

2(p+1)

(1 + 2κ)L(p, a)
Ψ

p
2p+2 .

This completes the proof. 2

Lemma 4.9. (Lemma 1.3.2 in [12]) Let t0, t1, · · ·, tK be a sequence of positive numbers such
that

tk+1 ≤ tk − γt1−λ
k , k = 0, 1, · · ·,K − 1,

where γ > 0 and 0 < λ ≤ 1. Then K ≤
⌊

tλ0
γλ

⌋
.

We define the value of Ψ(v) after the µ-update as Ψ0 and the subsequent values in the same
outer iteration are denoted as Ψk, k = 1, 2, · · · . Then we have

Ψ0 ≤ Ψ̃0, (4.7)

where Ψ̃0 is defined in (3.8). Let K denote the total number of inner iterations per outer
iteration. Then we have

ΨK−1 > τ, 0 ≤ ΨK ≤ τ.

Lemma 4.10. Let Ψ̃0 be as defined in (3.8) and K the total number of inner iterations in the
outer iteration. Then we have for 7

15 ≤ p ≤ 5
2 and a = 1 + 1√

1+2κ

K ≤ (1 + 2κ)L̃(p, a)Ψ̃
p+2

2(p+1)

0 ,
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where L̃(p, a) := (p+1)2
2−p

2(p+1)

p+2 L(p, a).

Proof: Using Theorem 4.8, Lemma 4.9 with γ := 2
3p

2(p+1)

(1+2κ)L(p,a) and λ := p+2
2(p+1) , and (4.7), we

have

K ≤ (1 + 2κ)L(p, a)

2
3p

2(p+1)

· 2(p + 1)
p + 2

Ψ0

p+2
2(p+1) ≤ (1 + 2κ)L̃(p, a)Ψ̃

p+2
2(p+1)

0 ,

where

L̃(p, a) :=
(p + 1)2

2−p
2(p+1)

p + 2
L(p, a). (4.8)

This completes the proof. 2

Theorem 4.11. Let a P∗(κ) LCP be given. If τ ≥ 1, the total number of iterations to have an
approximate solution with nµ ≤ ε is bounded by

⌈
(1 + 2κ)L̃(p, a)

θ
Ψ̃

p+2
2(p+1)

0 log
nµ0

ε

⌉
,

where Ψ̃0 as defined in (3.8), L̃(p, a) in (4.8), 7
15 ≤ p ≤ 5

2 , and 0 < θ < 1.

Proof: If the central path parameter µ has the initial value µ0 > 0 and is updated by multiplying
1− θ with 0 < θ < 1, then after at most

⌈
1
θ

log
nµ0

ε

⌉

iterations we have nµ ≤ ε.([13]) For the total number of iterations, we multiply the number of
inner iterations by that of outer iterations. Hence the total number of iterations is bounded by

⌈
(1 + 2κ)L̃(p, a)

θ
Ψ̃

p+2
2(p+1)

0 log
nµ0

ε

⌉
.

This completes the proof. 2

Remark 4.12. By Remark 3.8, for large-update methods by taking τ = O(n), θ = Θ(1), and
p = 5

2 , the algorithm has O((1 + 2κ)n
9
14 log nµ0

ε ) iteration complexity which improves the
iteration complexity with a factor n

5
14 when compared with the method based on the classical

logarithmic kernel function. For small-update methods by taking τ = O(1) and θ = Θ( 1√
n
),

we haveO((1+2κ)
√

n log nµ0

ε ) iteration complexity which is the best known complexity result
for such methods.
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