• Title/Summary/Keyword: predator-prey

Search Result 183, Processing Time 0.019 seconds

PREDATOR-PREY IN PATCHY SPACE WITH DIFFUSION

  • Alb, Shaban
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.15 no.2
    • /
    • pp.137-142
    • /
    • 2011
  • In this paper we formulate a predator-prey system in two patches in which the per capita migration rate of each species is influenced only by its own density, i.e. there is no response to the density of the other one. Numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation, i. e. the stable constant steady state loses its stability and spatially non-constant stationary solutions, a pattern emerge.

EXISTENCE OF GLOBAL SOLUTIONS FOR A PREY-PREDATOR MODEL WITH NON-MONOTONIC FUNCTIONAL RESPONSE AND CROSS-DIFFUSION

  • Xu, Shenghu
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.75-85
    • /
    • 2011
  • In this paper, using the energy estimates and the bootstrap arguments, the global existence of classical solutions for a prey-predator model with non-monotonic functional response and cross-diffusion where the prey and predator both have linear density restriction is proved when the space dimension n < 10.

PERIODIC SOLUTIONS OF A DISCRETE-TIME NONAUTONOMOUS PREDATOR-PREY SYSTEM WITH THE BEDDINGTON-DEANGELIS FUNCTIONAL RESPONSE

  • Dai, Binxiang;Zou, Jiezhong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.127-139
    • /
    • 2007
  • In this paper, we investigate a discrete-time non-autonomous predator-prey system with the Beddington-DeAngelis functional response. By using the coincidence degree and the related continuation theorem as well as some priori estimates, easily verifiable sufficient criteria are established for the existence of positive periodic solutions.

PATTERN FORMATION FOR A RATIO-DEPENDENT PREDATOR-PREY MODEL WITH CROSS DIFFUSION

  • Sambath, M.;Balachandran, K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.4
    • /
    • pp.249-256
    • /
    • 2012
  • In this work, we analyze the spatial patterns of a predator-prey system with cross diffusion. First we get the critical lines of Hopf and Turing bifurcations in a spatial domain by using mathematical theory. More specifically, the exact Turing region is given in a two parameter space. Our results reveal that cross diffusion can induce stationary patterns which may be useful in understanding the dynamics of the real ecosystems better.

On the Dynamical Behavior of a Two-Prey One-Predator System with Two-Type Functional Responses

  • Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.4
    • /
    • pp.647-660
    • /
    • 2013
  • In the paper, a two-prey one-predator system with defensive ability and Holling type-II functional responses is investigated. First, the stability of equilibrium points of the system is discussed and then conditions for the persistence of the system are established according to the existence of limit cycles. Numerical examples are illustrated to attest to our mathematical results. Finally, via bifurcation diagrams, various dynamic behaviors including chaotic phenomena are demonstrated.

CONVERGENCE PROPERTIES OF PREDATOR-PREY SYSTEMS WITH FUNCTIONAL RESPONSE

  • Shim, Seong-A
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.411-423
    • /
    • 2008
  • In the field of population dynamics and chemical reaction the possibility or the existence of spatially and temporally nonhomogeneous solutions is a very important problem. For last 50 years or so there have been many results on the pattern formation of chemical reaction systems studying reaction systems with or without diffusions to explain instabilities and nonhomogeneous states arising in biological situations. In this paper we study time-dependent properties of a predator-prey system with functional response and give sufficient conditions that guarantee the existence of stable limit cycles.

Dynamical Behaviors of a Discrete Predator-Prey System with Beddington-DeAngelis Functional Response

  • Choi, Yoon-Ho;Baek, Hunki
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • In this paper, we consider a discrete predator-prey system obtained from a continuous Beddington-DeAngelis type predator-prey system by using the method in [9]. In order to investigate dynamical behaviors of this discrete system, we find out all equilibrium points of the system and study their stability by using eigenvalues of a Jacobian matrix for each equilibrium points. In addition, we illustrate some numerical examples in order to substantiate theoretical results.

DYNAMICS OF A MODIFIED HOLLING-TANNER PREDATOR-PREY MODEL WITH DIFFUSION

  • SAMBATH, M.;BALACHANDRAN, K.;JUNG, IL HYO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.139-155
    • /
    • 2019
  • In this paper, we study the asymptotic behavior and Hopf bifurcation of the modified Holling-Tanner models for the predator-prey interactions in the absence of diffusion. Further the direction of Hopf bifurcation and stability of bifurcating periodic solutions are investigated. Diffusion driven instability of the positive equilibrium solutions and Turing instability region regarding the parameters are established. Finally we illustrate the theoretical results with some numerical examples.

ASYMPTOTICAL BEHAVIORS OF A DIFFUSIVE PREDATOR-PREY SYSTEM WITH RATIO-DEPENDENT FUNCTIONAL RESPONSE AND MATURATION DELAY

  • Wonlyul Ko
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.39-53
    • /
    • 2023
  • In this paper, we consider a delayed ratio-dependent predator-prey reaction-diffusion system with homogenous Neumann boundary conditions. We study the existence of nonnegative solutions and the stability of the nonnegative equilibria to the system. In particular, we provide a sufficient condition for the positive equilibrium to be globally asymptotically stable.

DYNAMIC BEHAVIOR OF A PREDATOR-PREY MODEL WITH STAGE STRUCTURE AND DISTRIBUTED DELAY

  • Zhou, Xueyong
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.193-207
    • /
    • 2010
  • In this paper, a predator-prey model with stage structure and distributed delay is investigated. Mathematical analyses of the model equation with regard to boundedness of solutions, nature of equilibria, permanence, extinction and stability are performed. By the comparison theorem, a set of easily verifiable sufficient conditions are obtained for the global asymptotic stability of nonnegative equilibria of the model. Taking the product of the per-capita rate of predation and the rate of conversing prey into predator as the bifurcating parameter, we prove that there exists a threshold value beyond which the positive equilibrium bifurcates towards a periodic solution.