Acknowledgement
This work was supported by the research grant of Research Institute of Sciences & Arts at Cheongju University (2021.03.01. - 2023.02.28.).
References
- R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio dependence, J. Theoret. Biol., 139 (1989), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
- S. A. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM J. Appl. Math., 65 (2005), 550-566. https://doi.org/10.1137/S0036139903436613
- D. Henry, Geometric Theory of Semilinear Parabolic Equations: Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.
- S. B. Hsu, T. W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci., 181 (2003), 55-83. https://doi.org/10.1016/S0025-5564(02)00127-X
- S. Liu and E. Beretta, Stage-structured Predator-prey Model with the Beddington-DeAngelis functional response, SIAM J. Appl. Math., 66 (2006), 1101-1129. https://doi.org/10.1137/050630003
- W. Ko, I. Ahn and S. Liu, Asymptotical behaviors of a general diffusive consumer-resource model with maturation delay, Discrete Contin. Dyn. Syst., 23 (2015), 1715-1733. https://doi.org/10.3934/dcdsb.2015.20.1715
- C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
- C. V. Pao, Coupled nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 196 (1995), 237-265. https://doi.org/10.1006/jmaa.1995.1408