DOI QR코드

DOI QR Code

ASYMPTOTICAL BEHAVIORS OF A DIFFUSIVE PREDATOR-PREY SYSTEM WITH RATIO-DEPENDENT FUNCTIONAL RESPONSE AND MATURATION DELAY

  • Wonlyul Ko (Department of Mathematics Education Cheongju University)
  • Received : 2023.01.09
  • Accepted : 2023.01.26
  • Published : 2023.02.28

Abstract

In this paper, we consider a delayed ratio-dependent predator-prey reaction-diffusion system with homogenous Neumann boundary conditions. We study the existence of nonnegative solutions and the stability of the nonnegative equilibria to the system. In particular, we provide a sufficient condition for the positive equilibrium to be globally asymptotically stable.

Keywords

Acknowledgement

This work was supported by the research grant of Research Institute of Sciences & Arts at Cheongju University (2021.03.01. - 2023.02.28.).

References

  1. R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio dependence, J. Theoret. Biol., 139 (1989), 311-326. https://doi.org/10.1016/S0022-5193(89)80211-5
  2. S. A. Gourley and Y. Kuang, A delay reaction-diffusion model of the spread of bacteriophage infection, SIAM J. Appl. Math., 65 (2005), 550-566. https://doi.org/10.1137/S0036139903436613
  3. D. Henry, Geometric Theory of Semilinear Parabolic Equations: Lecture Notes in Mathematics, Springer-Verlag, Berlin-New York, 1981.
  4. S. B. Hsu, T. W. Hwang and Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci., 181 (2003), 55-83. https://doi.org/10.1016/S0025-5564(02)00127-X
  5. S. Liu and E. Beretta, Stage-structured Predator-prey Model with the Beddington-DeAngelis functional response, SIAM J. Appl. Math., 66 (2006), 1101-1129. https://doi.org/10.1137/050630003
  6. W. Ko, I. Ahn and S. Liu, Asymptotical behaviors of a general diffusive consumer-resource model with maturation delay, Discrete Contin. Dyn. Syst., 23 (2015), 1715-1733. https://doi.org/10.3934/dcdsb.2015.20.1715
  7. C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
  8. C. V. Pao, Coupled nonlinear parabolic systems with time delays, J. Math. Anal. Appl., 196 (1995), 237-265. https://doi.org/10.1006/jmaa.1995.1408