• 제목/요약/키워드: power series equation

검색결과 100건 처리시간 0.037초

등변분포 평면응력을 받는 SS-C-SS-C 직사각형 판의 진동과 좌굴의 엄밀해 (Exact Solutions for Vibration and Buckling of An SS-C-SS-C Rectangular Plate Loaded by Linearly Varying In-plane Stresse)

  • 강재훈;심현주;장경호
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.56-63
    • /
    • 2004
  • Exact solutions are presented for the free vibration and buckling of rectangular plates haying two opposite edges ( x=0 and a) simply supported and the other two ( y=0 and b) clamped, with the simply supported edges subjected to a linearly varying normal stress $\sigma$$_{x}$=- $N_{0}$[1-a(y/b)]/h, where h is the plate thickness. By assuming the transverse displacement ( w) to vary as sin(m$\pi$x/a), the governing partial differential equation of motion is reduced to an ordinary differential equation in y with variable coefficients. for which an exact solution is obtained as a power series (the method of Frobenius). Applying the clamped boundary conditions at y=0 and byields the frequency determinant. Buckling loads arise as the frequencies approach zero. A careful study of the convergence of the power series is made. Buckling loads are determined for loading parameters a= 0, 0.5, 1, 1.5. 2, for which a=2 is a pure in-plane bending moment. Comparisons are made with published buckling loads for a= 0, 1, 2 obtained by the method of integration of the differential equation (a=0) or the method of energy (a=1, 2). Novel results are presented for the free vibration frequencies of rectangular plates with aspect ratios a/b =0.5, 1, 2 when a=2, with load intensities $N_{0}$ / $N_{cr}$ =0, 0.5, 0.8, 0.95, 1. where $N_{cr}$ is the critical buckling load of the plate. Contour plots of buckling and free vibration mode shapes ate also shown.shown.

멱급수를 이용한 완경사 방정식의 해 (The Solution of Mild-Slope Equation using Power Series)

  • 정태화;이승오;박진호;조용식
    • 한국방재학회 논문집
    • /
    • 제8권1호
    • /
    • pp.133-138
    • /
    • 2008
  • 외해에서 내습하는 파랑 자료를 분석하는 일은 연안에서 발생하는 문제를 해결함에 있어 기본이 되기 때문에 매우 중요하다. 파랑을 해석하는 방법에는 크게 수치 모델을 이용하는 방법과 해석 해를 이용하는 방법이 있다. 수치 모델의 경우, 다양한 지형과 파랑 조건에 대해 적용할 수 있다는 장점이 있지만 수치 오차를 고려해야 하는 번거로움이 있다. 반면, 해석 해의 경우 수치 오차 없이 빠르고 정확하게 해를 구할 수 있다는 장점이 있지만 특정한 지형 및 파랑 조건에서만 성립한다는 단점이 있다. 본 연구에서는 수치적인 기법과 해석적인 접근을 혼합하여 수치 오차를 최소화시키면서 다양한 조건에 적용이 가능한 완경사 방정식의 해를 유도하였다. 유도된 해를 기존의 수치 해와 비교한 결과 매우 잘 일치한다는 알 수 있었다.

Post-buckling analysis of piles by perturbation method

  • Zhao, M.H.;He, W.;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.191-203
    • /
    • 2010
  • To investigate the critical buckling load and post-buckling behavior of an axially loaded pile entirely embedded in soil, the non-linear large deflection differential equation for a pinned pile, based on the Winkler-model and the discretionary distribution function of the foundation coefficient along pile shaft, was established by energy method. Assuming that the deflection function was a power series of some perturbation parameter according to the boundary condition and load in the pile, the non-linear large deflection differential equation was transformed to a series of linear differential equations by using perturbation approach. By taking the perturbation parameter at middle deflection, the higher-order asymptotic solution of load-deflection was then found. Effect of ratios of soil depth to pile length, and ratios of pile stiffness to soil stiffness on the critical buckling load and performance of piles (entirely embedded and partially embedded) after flexural buckling were analyzed. Results show that the buckling load capacity increases as the ratios of pile stiffness to soil stiffness increasing. The pile performance will be more stable when ratios of soil depth to pile length, and soil stiffness to pile stiffness decrease.

ANALYTICAL AND NUMERICAL SOLUTIONS OF A CLASS OF GENERALISED LANE-EMDEN EQUATIONS

  • RICHARD OLU, AWONUSIKA;PETER OLUWAFEMI, OLATUNJI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제26권4호
    • /
    • pp.185-223
    • /
    • 2022
  • The classical equation of Jonathan Homer Lane and Robert Emden, a nonlinear second-order ordinary differential equation, models the isothermal spherical clouded gases under the influence of the mutual attractive interaction between the gases' molecules. In this paper, the Adomian decomposition method (ADM) is presented to obtain highly accurate and reliable analytical solutions of a class of generalised Lane-Emden equations with strong nonlinearities. The nonlinear term f(y(x)) of the proposed problem is given by the integer powers of a continuous real-valued function h(y(x)), that is, f(y(x)) = hm(y(x)), for integer m ≥ 0, real x > 0. In the end, numerical comparisons are presented between the analytical results obtained using the ADM and numerical solutions using the eighth-order nested second derivative two-step Runge-Kutta method (NSDTSRKM) to illustrate the reliability, accuracy, effectiveness and convenience of the proposed methods. The special cases h(y) = sin y(x), cos y(x); h(y) = sinh y(x), cosh y(x) are considered explicitly using both methods. Interestingly, in each of these methods, a unified result is presented for an integer power of any continuous real-valued function - compared with the case by case computations for the nonlinear functions f(y). The results presented in this paper are a generalisation of several published results. Several examples are given to illustrate the proposed methods. Tables of expansion coefficients of the series solutions of some special Lane-Emden type equations are presented. Comparisons of the two results indicate that both methods are reliably and accurately efficient in solving a class of singular strongly nonlinear ordinary differential equations.

THE STABILITY IN AN INCLINED LAYER OF VISCOELASTIC FLUID FLOW OF HYDROELECTRIC NATURAL CONVECTION

  • El-Bary, A.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제9권2호
    • /
    • pp.17-27
    • /
    • 2005
  • The problem of the onset stability in an inclined layer of dielectric viscoelastic fluid (Walter's liquid B') is studied. The analysis is made under the simultaneous action of a normal a.c. electric field and the natural convection flow due to uniformly distributed internal heat sources. The power series method used to obtain the eigen value equation which is then solved numerically to obtain the stable and unstable solutions. Numerical results are given and illustrated graphically.

  • PDF

Analysis of Symmetric and Periodic Open Boundary Problem by Coupling of FEM and Fourier Series

  • Kim, Young Sun
    • Journal of Magnetics
    • /
    • 제18권2호
    • /
    • pp.130-134
    • /
    • 2013
  • Most electrical machines like motor, generator and transformer are symmetric in terms of magnetic field distribution and mechanical structure. In order to analyze these problems effectively, many coupling techniques have been introduced. This paper deals with a coupling scheme for open boundary problem of symmetric and periodic structure. It couples an analytical solution of Fourier series expansion with the standard finite element method. The analytical solution is derived for the magnetic field in the outside of the boundary, and the finite element method is for the magnetic field in the inside with source current and magnetic materials. The main advantage of the proposed method is that it retains sparsity and symmetry of system matrix like the standard FEM and it can also be easily applied to symmetric and periodic problems. Also, unknowns of finite elements at the boundary are coupled with Fourier series coefficients. The boundary conditions are used to derive a coupled system equation expressed in matrix form. The proposed algorithm is validated using a test model of a bush bar for the power supply. And the each result is compared with analytical solution respectively.

Numerical calculation and experiment of a heaving-buoy wave energy converter with a latching control

  • Kim, Jeongrok;Cho, Il-Hyoung;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • 제9권1호
    • /
    • pp.1-19
    • /
    • 2019
  • Latching control was applied to a Wave Energy Converter (WEC) buoy with direct linear electric Power Take-Off (PTO) systems oscillating in heave direction in waves. The equation of the motion of the WEC buoy in the time-domain is characterized by the wave exciting, hydrostatic, radiation forces and by several damping forces (PTO, brake, and viscous). By applying numerical schemes, such as the semi-analytical and Newmark ${\beta}$ methods, the time series of the heave motion and velocity, and the corresponding extracted power may be obtained. The numerical prediction with the latching control is in accordance with the experimental results from the systematic 1:10-model test in a wave tank at Seoul National University. It was found that the extraction of wave energy may be improved by applying latching control to the WEC, which particularly affects waves longer than the resonant period.

직.병렬전압원 모델에 의한 UPFC 전력조류제어에 관한 연구 (A Study on Power Flow Control of UPFC by Series and Shunt Voltage Source Model)

  • 정인학;김경신;정재길
    • 조명전기설비학회논문지
    • /
    • 제15권2호
    • /
    • pp.21-30
    • /
    • 2001
  • 본 논문에서는 UPFC(Unified Power Flow Controller)설치 전력계통에서 어떤 선로의 전력조류를 원하는 값으로 직접 제어함과 동시에 계통 전체의 전력조류해석을 행하는 선로조류제약을 고려한 전력조류해석 알고리즘을 제시하고 이 알고리즘을 UPFC에 의한 과부하선로의 과부하해소제어에 적용하여 UPFC 제어 방법을 제시하고 사례연구를 통하여 UPFC의 제어효과의 효용성을 입증하였다. 또한 효과적인 조류해석을 위한 UPFC의 직·병렬 전압원의 초기치를 설정하는 공식을 유도하였다.

  • PDF

전압원 컨버터 기반의 UPFC 모델에 대한 에너지 함수 제어전략의 적용 (Application of energy function control strategy to VSC based UPFC Model)

  • 국경수;오태규;전영환;김학만;김태현;전진홍
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.259-261
    • /
    • 2000
  • UPFC(Unified Power Flow Controller) consists of two voltage sourced converter(VSC)s inserted into AC system through series and parallel coupling transformer, where two VSCs are linked by capacitor at DC-side. Since VSC acts as an AC voltage source behind a reactance, where both magnitude and phase angle of the source are controllable, UPFC can be represented by the equation related to input-output relation of two VSCs. Voltage control of DC-link capacitor provides the path of real power flow between two VSCs. While UPFC is controlled for maintaining the given reference value in steady state, it should be controlled for damping power oscillation in dynamics. For such a control objective, the control strategy based on the energy function was proposed and has been shown to be effect and robust for damping power oscillation of power system. In this paper, UPFC model based on the VSC was analysed and applied to power-flow control and stability analysis. The control strategy based on the energy function is adopted for damping power oscillation of power system. The effectiveness of proposed control strategy was verified by simulation study

  • PDF

위상이동 광탄성법과 멱급수형 응력함수를 이용한 인장시편 중앙 균열선단 주위 응력장 해석 (Analysis of Stress Distribution around a Central Crack Tip in a Tensile Plate Using Phase-Shifting Photoelasticity and a Power Series Stress Function)

  • 백태현
    • 비파괴검사학회지
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2009
  • 본 연구에서는 균열선단 주위의 응력장을 균열선단으로부터 멀리 떨어진 직선상에서 위상이동 광탄성법과 멱급수형 등각사상 맵핑함수를 이용하여 해석하였다. 해석된 광탄성 응력장을 실제의 광탄성프린지와 비교하였다. 정성적인 비교가 용이하도록 디지털 영상처리에 의해 등색프린지 패턴을 2배로 증식시키고, 증식된 프린지를 다시 세선 처리하여 서로 비교하였다. 정량적인 분석을 위하여 각각의 광탄성 측정 데이터와 계산된 프린지에 대한 퍼센트 오차와 멱급수형 응력함수의 항의 수에 따른 퍼센트 오차에 대한 표준편차를 비교하였다. 응력함수의 항의 수를 변화시켰을 때 표준편차를 계산하였다. 해석 결과 모드I 응력확대계수는 유한요소법과 경험식으로 계산한 값과 2% 이내로 근접하였다.