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THE STABILITY IN AN INCLINED LAYER OF VISCOELASTIC FLUID
FLOW OF HYDROELECTRIC NATURAL CONVECTION

A.A. El-Bary

ABSTRACT The problem of the onset stability in an inclined layer of dielectric viscoelastic fluid
(Walter’s liquid B’) is studied. The analysis is made under the simultaneous action of a normal a.c.
electric field and the natural convection flow due to uniformly distributed internal heat sources. The
power series method used to obtain the eigen value equation which is then solved numerically to obtain
the stable and unstable solutions. Numerical results are given and illustrated graphically.

1. INTRODUCTION

The phenomenal growth of energy requirements in recent years has been attracting considerable
attention all over the world. This has resulted in a continuous exploration of new ideas and avenues in
harnessing various conventional energy sources, such as tidal waves, wind power, geo-thermal energy,
etc. It is obvious that in order to utilize geo-thermal energy to a maximum, one should have a complete
and precise knowledge of the amount of perturbations needed to generate convection currents in geo-
thermal fluid. Also, knowledge of the quantity of perturbations that are essential to initiate convection
currents in mineral fluids found in the earth’s crust helps one to utilize the minimal energy to extract
the minerals. For example, in the recovery of hydro-carbons from underground petroleum deposits, the
use of thermal processes is increasingly gaining importance as it enhances recovery. Heat is being
injected into the reservoir in the form of hot water or steam or heat can be generated by burning part of
the crude in the reservoir. In all such thermal recovery processes, fluid flow takes place through a
dielectric medium and convection currents are detrimental.

In technological fields there exist important class of fluid, called non-Newtonian fluid, are also
being studied extensively because of their practical applications, such as fluid film lubrication, analysis
of polymers in chemical engineering etc. the micropolar fluid is famous case for non-Newtonian fluid
as El-Bary [1]. Also, another example for non-Newtonian fluid is viscoelastic fluid. A detailed
theoretical investigation has recently begun for the viscoelestic prototype designated liquid B’Walters
[2] and Beard and Walters [3]. Many other authors have contributed to the subject. Sen [4] studied the
behavior of unsteady free convection flow of a viscoelastic fluid past an infinite porous plate with
constant suction. The effects of suction, free oscillations and free convection currents on flow have
been studied by Soundalgeker and Patil [5]. Singh and Singh [6] have studied the magnetohydrod-
ynamic flow of viscoelastic fluid past an accelerated plate. The flow of viscoelastic and electrically
conducting fluid past an infinite plate has been studied by Sherief and Ezzat [7]. In most of the above
applications, the method of solution due to Lighthil [8] and Stuart [9] is utilized.

The method of the matrix exponential, proposed by Ezzat [10-13], which constitutes the basis of the
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state space approach of modern control theory is applied to the non-dimensional equations of a
viscoelastic fluid flow of hydromagnetic free convection flows.

A temperature gradient applied to a dielectric fluid produces a gradient in the dielectric constant and
electrical conductivity. The application of a dc electric field the results in the accumulation of free
charge in the fluid. The free charge buidup occurs exponentially in tie with a time constant. This
constant is known as the electrical relaxation time. If an ac electric field is applied at frequency much
higher than the reciprocal of the electrical relaxation, the free charge does not have time to accumulate.
The electrical relaxation times of most dielectric fluids appear to be sufficiently long to make free
charge effects negligible at standard power line frequencies is so low that it makes no significant
contribution to the temperature field. Furthermore, variations in the body force are so rapid that its
mean value can be assumed as the effective value in determining fluid motions, except in the case of
fluids of extremely low viscosity. Thus, the case of an ac electric field is more tractable than that of a
dc electric field. Turnbull and Melcher [14] and Turnbull [15] have examined the ac case.

An important stability problem is the thermal convection in a thin layer of fluid heated from below.
A detailed account of thermal convection in a thin layer of Newtonian fluid heated from below, under
varying assumptions, has been given by Chandrasekhar [16]. The problem of the onset of convective
instability in an inclined fluid layer including heat sources in the presence of a temperature gradient
and an a.c. electric field was studied by Mohamed and et al. [17]. They used the power-series method
to obtain the eigenvalue equation that is then solved numerically to obtain the stable and unstable
solutions. The stability of viscolastic conducting liquid heated from below in the presence of a
magnetic field is studied by Othman and Ezzat [18]. Ezzat and Othman [19] are studied the effect ofa
vertical ac electric field on the onest of convective instability in a dielectric micropolar fluid layer form
below confined between two horizontal planes under the simultaneous action of the rotation of the
system and the vertical temperature gradient.

The purpose of this work is to study the stability of natural convection in an inclined fluid layer
(Walter’s liquid B’) with internal heat generation in the presence of an ac electric field.

2. FORMULATION OF THE PROBLEM

We consider an infinite incompressible and dielectric viscoelastic fluid layer confined between two
parallel plates which are separated by a distance and inclined from the vertical by an anglef. It is
assumed that the fluid layer is heated internally by a uniform distribution of heat sources and that the
two plates are maintained at constant and equal temperatures To. The plate at x=-— is maintained at
electric potential (¢, = 0), whereas the plate at » =—';— is kept at constant and high alternating potential
whose root-mean-square value is ¢,.

Under the foregoing assumptions, the basic equations can be written as [2]
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pc,,[—‘;—f+(v.V)T:|=kV2T+Q (3)
div(e E)=0 “4)

and
curlE=0 or E=-V¢$ , )

where, v = (4, v, w) is the velocity of the fluid, g = (-g sin 6, 0, -g cos 0) is the gravitational
acceleration, p is the mass density, P is the pressure, 1 is the limiting viscosity at small rate of shear,
K, is the elastic constant of Walters’ liquid B’, ¢, is the specific heat at constant volume, k is the
thermal conductivity, T is the temperature of the fluid, Q is the heat generation within the fluid per unit
volume per unit time, € is the dielectric constant, E = [E,, 0, 0] is the electric field, ¢ is the root-mean-
square value of the electric potential and f, is the force of electrical origin which may be expressed as
Landau [20] in the form,

£ = pE-LE Ve + Lv(p2EE?. (6)
2 2 T ap
taking into account the fact the free charge density p, is zero.
If we replace the pressure by
* 1 0d¢ .2
P =P-—p—E 7
295 @
The electrostriction term disappear from the equation (2), which can be rewritten in the form

* 2 . 2
p[@”kgi_]:pg_aap ik _lEzae_Ko[a( G

ot 0%, X, 0x, 8%, 2 0x, 3t 0x, 0%,
o, av,,, 8, o, 8
+v i _ i n __2 m i . 8
”'(ax,,,axkaxk) (6xm)(axk8xk) (6xk)(6xmaxk) ®)
The boundary conditions
u=v=w=0 at x=i—)24, 9
A
T=T, at x=t=, (10
$=0 at x=-2, (n
2
b=, at x=—%, (12)

The mass density p and the dielectric constant € are assumed to be linearly dependent on temperature
as [18]:
p=p,ll-a(l -T)1, a>0 (13)
e=¢,1-eT -T)], e>0 (14)
where the subscript “0” refers to values at the midplane x = 0, o is the coefficient of volume expansion
and e is the coefficient of relative variation of the dielectric constant with temperature.
We first obtained the following steady solutions (denoted by an overbar).
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Since the flow is assumed to be along the z-axis, W is obtained in the form

w=9—§—Q— A A e L elcose , u=v=0, (19)
kv [1920 80 24
E. = E, ., E,=0 , E.=0, (20)
1_£Q _j_'i_x2
2k | 4
3—iF. dv @

where P, is the pressure atz=0and x =0, v = L is the kinematic viscosity, and w and 2
have been determined under the condition that the total flux of flow across a plane z = constant is zero
[17].

Let this initial steady state be slightly perturbed where any physical quantities y can be expressed
after perturbation by the simple relationy = J +y', and prime refers to perturbed quantities.
Following the usual steps of linear stability theory we can obtain the following main equations:

- 27 A ,
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ot 0z dx
Vg +eE, 2 =0 24
2 2
where K =——is the thermal diffusivity and V] = -697 + -697 is the two-dimensional Laplacian.
Po Gy y z

The associated boundary conditions are given by
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u'=v’=w’=T’=¢’=0 at x,—:i_;:.
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25)

We first rendered Egs. (22) — (24) and the boundary conditions (25) in a dimensionless from by
choosing , _ﬁ,%_%‘ﬁ and < £,24 as the units of length, time, velocity, temperature and electrostatic
potential resﬁectively and the' equations are then simplified in the usual manner by decomposing the

solution in terms of normal modes, so that
W', T, ¢') = [U(x), O(x), @(x)] explot +ila,y +a, )]

(26)

where “a,” and “a,” are the (real) wave numbers in the y and z directions and & is the complex time

constant.
This makes it possible to obtain the following system of equations:

lo - (D* ~2)](D? - 2) U + ia, Ry cos@[m(D? - Z2)U - D*w: .U + D6]
+ Ry 2sinf @ + R, 2 x[@ + D®] +K; [0 + Ry cosdml(D* - #*)*U =0,
[Po-(D*-2*)16@+Plia, Rycosdwi® - xU1=0 ,
and
(D> -2)® + DO =0 .
The boundary conditions are

1
U=DU=6=0=0 at x=i5
where,
P = _I% Prandtl number,
5
R, =282 lf heat Rayleigh number,
v
2 2 N2 44
R, = o€ E"202 4 electric Rayleigh number,
Pok”v
K = I:; the dimensionless elastic constant
- 1 1 2 1 4 . . .
W= ———— X +—x the dimensionless velocity,

1920 80 24
and D denotes differentiation with respect to x.
To describe three-dimensional disturbances, it is convenient to introduce the parameters
X =d +a
and,
&,
A
then, equations (27) and (28) become
(D? - 2 - o)(D? - R)U - ia iR, cosdim(D* -~ #) - PwilU - iaAR, cosd DO

- R, A2sin0@ - 2 xR,[D® + O] - K)[c + Ryw] (D*- YU =0 ,

a=

@7
(28)

29)

(30)

@31
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(33)
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[D?* -2 -Pol® - PliaiR,cos6w .0 —xUl=0 . (39)
It should be noted that the value of the parameter “a” is within the range 0 < a < 1. The case a = 0

corresponds to the case a, = 0 (i.e. longitudinal rolls); the case a = 1 corresponds to the case ay, =0 (ie.
transverse rolls).

3. SOLUTION

Equations (38) and (39) can be rewritten in the form:
(b, + b, x? + b, x*) D*U - (. —c, % + ¢;x*) DU + (f, — £, + fix*)U

-SDO-FO-T'x(®@+Dd)=0 , (40)
D20 (b +hx* +hx*)@+ P xU=0 , (41)
where,
S=iaARycosB (42)
F=2*Rysin® (43)
C=2*R, (44)
b1=[1—K;(0'+§12—6RHc089)] , b2=8—101<; R, cosd
b, = -—2—IZ K R, cosf , (45)
1 . 1
=272 + S-2#K - R 0
“ 7 * 1920 o (0= Tg50 Rucosd]
cz=§165+£6,12K;RHcose , c3=-;ZS—1—12-l2K;RHcost9 , (46)
feRR + o)+ Seh - L) 2K (0 + —— R, cos0)
! 1920 40 0 1920 Y
S T A 2 A
f2 =S(§—6—§) _%Ko RH cosd R f; =§S—§ZK0RH cosé s (47)
1 1 1
=2 +P S) , h=—PS , hy=—PS , 48
h’l r(0+1920 ) 2 80 r 3 24 r ( )

The power series method is adopted to solve equations (40), (41) and (29), since this method is
much less laborious than other various approximate methods and moreover, it enables one to obtain
essentially exact values of the stability condition, unless the product A Ry is exceedingly large.

Applying this power series method, the general solutions of equations (40), (41) and (29) can be
constructed in the form

U=£C, £ AGmmx (49)
2) =m§=1q,, £ B(m,m)x"" (50)

@ =1 C, £ H(m,nx"" (51)
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where C, to Cy are arbitrary constants. The series coefficients A(m, n), B(m, n) and H(m, n) are found
from equations (40), (41) and (29) to obey the following recurrence relations:
A(m,n) =8, 4 form=1-8, n=1,2,3,4 (52)

1
Y Y YT {((n-3)(n-4)C,Am,n-2) - fAm,n-4,

+ I B(m,n-5)4 , - [((n-3)(n-4)(n-5)(n-6)b, A(m,n-2)
+(n-5)(n-6)C, A(m,n—4) - f, A(m,n~6) - I B(m,n-6)14, ,
+(m-T\H(m,n-6)4, + [(n-7)(n-8)C; A(m,n-6) — f; A(m,n-8)
+(n-5)(n—6)(n-7)(n—-8)b, A(m,n-4) - (n-8)S B(m,n -4},

A(m,n) =

form=1-8, n=5,67,... (53)
Bm,n)=8,,+4 form=1-8§, n=1,2 (54)
B(m,n) = Fl)l(ﬁiz-){h‘ B(m,n-2)4,, - [h, Bim,n—4) + P. A(m,n~3)] 4,,
+hyBim,n-6)4,, } form=1-8, n=3,4,5, (55)
H(m, n) =844+ form=1->8, n=1,2 (56)
1
H(m,n) = ————— ¥ H(m,n-2) - (n-2)B(m,n-1)4;,,
(m,n) D2 {# H(m,n-2) - (n-2)B(m,n )4,
form=1-8§, n=1,2 (57)
where
8,;,=0  for .i ¢{' (58)
g;; =1 for i=j
Aj=0 for > (59)
4 ;=1 for i<

Let us now impose the boundary conditions (30) to obtain eight homogeneous algebraic equations
for eight unknown constants C; to Cg. The requirement that the determinant of coefficients of C; to Cy
must vanish in order to ensure a nontrivial solution of the form

| X(A,m) =0 (60)
where,
n-1 n-2
X(,m) = Z_A(m n)(;) , X(2,m) = Z_(n DA(m, n)(lj
n- n-1
X(5,m) = £ B(m, n)(l . X(4,m) = {*H(m,n)(i)
2 =t 2 61)

n- n-2
) . X(6,m) = $(n-DAm, n)( ;)

n=1 n=1

X(5,m) = ZA(m n)(

1

2

1 n- n-1
E) , X(8m)= ZH(m n)(———j

n=1

X(7,m) = £ B(m,n)
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4. NUMERICAL RESULTS

The case when 0° <8 <90°, E#0, K, =0 and a= 0 has been studied in [17].

In the present paper the case 0° < 6 < 90° E # 0, a = 0 (i.e. a, = 0 or longitudinal rolls) and
K; # 0 is treated. It is shown that if we fix the values of Prandtl number P,, wave number A, heat
Rayleigh number Ry, the inclination angle 6, the time constant (c = 1) and the elastic constant K,

one obtains a quadratic equation of R, with coefficients that depends on A as a parameter. This
equation can be solved numerically to obtain the critical values of Rs. The function R(}) is illustrated
graphically for various fixed values of K, Ry and 6 as parameters. It can seen that the curves
obtained pass through a critical minimum values R, corresponds to a critical wave number A..

Figures 1, 2 and 3 show the plots of R,, when P, =5, Ry = 1000 and 0° <6 < 90°, for the values of
K: =0,0.1,04 and 0 < A < 3 at the different values of 8. We notice from these figures that as 0
increases the critical values of the electric Rayleigh number increases, which indicates that the angle of
the inclination has destabilizing effect but the elastic coefficient K has stabilizing effect.
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Figures 4, 5 and 6 show the plots of Ry, when P, =5, A =18and 0°<6 < 90° for the values of
K =0,0.1,0.4 and 100 < Ry < 1000. The critical value of electric Rayleigh number decreases as

o
* .
K, increases.
100,000 P 100,000 Py
Pews Pp»3
10,000+ 10,000
Rae
RAc
K] 0
— K =0 .x;-m
o K w02 ——-- K] ab4
eme K¥ w06
* 1,000
U 100 200 300 400 500 600 700 BOO 8001,000
100 200 300 400 600 600 700 800 8007,000 Ry
Ry Figure $
Figure 4 represents the vacistion of R, with Ry for various
represents the varistion of R, with Ry for various nudv&-sofk:mdr,-s.!)-u".

fixed values of ki wed P, w S, 8w 0",



26 A.A. EI-BARY

100,000
0 =90°
Py -5
L o e — -
10,000+
Ac
X =0
K, =03
—m— K w04

100 200 300 400 500 600 700 BOO €001,000
R
Figure 6 H
represcats the variation of R, with Ry for various
fixed values of k. and P, =3, 0 =90°,

Figures 7 and 8 show that for fixed values of K:, and P, as the heat Rayleigh number increases the
critical values of electric Rayleigh number decreases.
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5. CONCLUSION

In general one can conclude that:

1. At fixed values of P,, Ry and for various values of K; it is noticed that the angle of inclination
about the vertical axis has instability effect.
2. For fixed P,, Ry and 8 it is shows that the elastic coefficient K > has stabilizing effect.
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