• Title/Summary/Keyword: power loss analysis

Search Result 1,501, Processing Time 0.028 seconds

Analysis of MLF Characteristics on 12 Load Levels (부하수준 별 한계손실계수 변동특성 분석)

  • Mun, Yeong-Hwan;Kim, Ho-Yong;;Sim, U-Jeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.6
    • /
    • pp.284-289
    • /
    • 2002
  • The transmission networks do not consist of perfect conductors and a percentage of the power generated is therefore lost before it reaches the loads. Since this network loss contributes to the cost of suppling power to consumers, it must be considered that the most efficient dispatch and location of generators and loads are to be achieved. In this paper, marginal loss factors are calculated for 12 load levels that represent the impact of marginal network losses on nodal prices at the transmission network connection points at which generators are located. Based on comparison analysis of marginal loss factors on 12 load levels, we found the MLF characteristics in KOREA.

Flyback switching loss analysis by capacitor charge and energy conservation

  • Jin, ChengHao;Chung, Bong-Geun;Moon, SangCheol;Koo, Gwan-Bon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.179-180
    • /
    • 2015
  • The task of measuring losses becomes more challenging with ever increasing efficiencies and operating frequencies in power electronics applications. Generally, the process of traditional switching loss calculation in flyback converter is very complicated. MOSFET drain-source voltage and current waveforms are needed to calculate switching loss. However, as we know in switched capacitor converter, switching loss can be easily calculated by charge and energy conservation law with known initial and final capacitor voltages. In this paper, the same method is applied to fly-back converter switching loss analysis to simplify calculation procedure.

  • PDF

Analysis of Insulation Life Loss due to Fault Occurrence of TP Cable for HVDC Systems (고장 발생에 따른 HVDC 시스템용 TP 케이블의 절연체 수명 손실 분석)

  • Woo-Hee Jeong;Jae-In Lee;Seok-Ju Lee;Minh-Chau Dinh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.55-66
    • /
    • 2024
  • In order to safely use thermoplastic (TP) cables in high-voltage direct current (HVDC) systems, it is necessary to analyze the life loss rate of the cable due to system fault that may occur during operation through various research and tests. In this paper, we analyzed the insulation life loss rate of TP cable according to the type of faults that may occur during HVDC system operation. Electric power due to fault was applied to the TP cable model, and the life loss rate of the insulator was analyzed by applying the Arrhenius-Inverse Power Model (IPM) based on the analysis results through the 2D finite element method. As a result of the analysis, the life loss rate of the insulator was highly influenced by the electric field strength, and the loss rate was highest inside the insulator when a fault occurred. These results can be used as important characteristics in the early design stage for commercialization of TP cables.

An analysis of mutual influence between power conversions caused by contact loss during traction of next generation high speed train (차세대 고속전철 주행에 따른 이선현상이 전력변환 상호간에 미치는 영향분석)

  • Kim, Jae-Moon;Chang, Chin-Young;Kim, Yang-Soo;Ahn, Jeong-Joon;Kim, Yeon-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.10-12
    • /
    • 2009
  • Electromagnetic Interference(EMI) in electric railway operation has become increasingly important. The components within very high power electronic, and the circuits for treating low-level signals, comprise complex system that must coexist and be highly reliable. To study it, It were included how much the HEMU-400X generates EMI and it has an effect on the power conversion units which resulted from Power Line Disturbance (PLD) phenomenon by contact loss during its running. In this study, the dynamic characteristic of a contact wire and pantograph suppling electrical power to high-speed trains are investigated. The analysis of the loss of contact based on Power Simulator program software is performed to develop power line disturbance model suitable for high speed operation. It is confirmed that a contact wire and pantograph model are necessary for studying the dynamic behavior of the pantograph system.

  • PDF

Design and Efficiency Analysis 48V-12V Converter using Gate Driver Integrated GaN Module (게이트 드라이버가 집적된 GaN 모듈을 이용한 48V-12V 컨버터의 설계 및 효율 분석)

  • Kim, Jongwan;Choe, Jung-Muk;Alabdrabalnabi, Yousef;Lai, Jih-Sheng Jason
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This study presents the design and experimental result of a GaN-based DC-DC converter with an integrated gate driver. The GaN device is attractive to power electronic applications due to its superior device performance. However, the switching loss of a GaN-based power converter is susceptible to the common source inductance, and converter efficiency is severely degraded with a large loop inductance. The objective of this study is to achieve high-efficiency power conversion and the highest power density using a multiphase integrated half-bridge GaN solution with minimized loop inductance. Before designing the converter, several GaN and Si devices were compared and loss analysis was conducted. Moreover, the impact of common source inductance from layout parasitic inductance was carefully investigated. Experimental test was conducted in buck mode operation at 48 -12 V, and results showed a peak efficiency of 97.8%.

An optimal design of the Kopp Ball Variator continuously variable transmission (Kopp Ball Variator 무단변속기의 최적설계)

  • 임경호;김두만
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.38-46
    • /
    • 1992
  • An optimal design technique for minimum power loss in Kopp Ball Variator Continuously Variable Transmission is developed. Kinematic analysis of traction drive contact is performed to find spin for Kopp Ball Variator, and traction force and torque are calculated from mathem atical model of traction drive contact. The objective function for optimal design is total power loss including contact loss and bearing losses. The design contraints are derived from energy balance for input and output power. The formulated optimal design problem is implemented to a non-linear programming algorithm to find minimum power loss. The performance of optimal ly designed Kopp Ball Variator shows that efficiency is increased about 5-10% compare to a commercial unit.

  • PDF

Analysis of Synchronous Rectification Discontinuous PWM for SiC MOSFET Three Phase Inverters

  • Dai, Peng;Shi, Congcong;Zhang, Lei;Zhang, Jiahang
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1336-1346
    • /
    • 2018
  • Wide band gap semiconductor devices such as SiC MOSFETs are becoming the preferred devices for high frequency and high power density converters due to their excellent performances. However, the proportion of the switching loss that accounts for the whole inverter loss is growing along with an increase of the switching frequency. In view of the third quadrant working characteristics of a SiC MOSFET, synchronous rectification discontinuous pulse-width modulation is proposed (SRDPWM) to further reduce system losses. The SRDPWM has been analyzed in detail. Based on a frequency domain mathematical model, a quantitative mathematical analysis of the harmonic characteristic is conducted by double Fourier transform. Meanwhile, a switching loss model and a conduction loss model of inverter for SRDPWM have been built. Simulation and experimental results verify the result of the harmonic analysis of the double Fourier analysis and the accuracy of the loss models. The efficiencies of the SRDPWM and the SVPWM are compared. The result indicates that the SRDPWM has fewer losses and a higher efficiency than the SVPWM under high switching frequency and light load conditions as a result of the reduced number of switching transitions. In addition, the SRDPWM is more suitable for SiC MOSFET converters.

Design and Simulation of High Efficiency PWM Modulation Method for Three-phase Matrix Converter (3상 매트릭스 컨버터의 고효율 변조방법 설계 및 시뮬레이션)

  • Lim, Hyun-Joo;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.337-344
    • /
    • 2012
  • A matrix converter is used for converting AC/AC power directly. In order to generate sinusoidal input/output waveform in matrix converter, it uses nine bidirectional switches and PWM modulation. This paper presents an analytical averaged loss model of matrix converter with DDPWM(direct duty ratio PWM) and proposes a new switching method for reducing switching losses. A Mathematical loss models with average magnitude of voltage/current are classed as conduction and switching loss. The proposed switching pattern is improved with existing DDPWM. To prove improved efficiency with proposed DDPWM, this paper compares losses between suggested switching pattern and conventional switching pattern using mathematical and simulation method. Each loss types are influenced by environmental factors such as temperature, switching frequency, output current and modulation method.