• Title/Summary/Keyword: power amplifier

Search Result 1,858, Processing Time 0.028 seconds

High Efficiency Power Amplifier Based on Digital Pre-Distortion (디지털전치왜곡 기반 고효율 전력증폭기 설계)

  • Kwon, Ki-Dae;Yoon, Wonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1847-1853
    • /
    • 2014
  • The PAPR of the input signal is increased due to OFDMA signal in a mobile communication system. High efficiency of a power amplifier, which accounts for power consumption, is a very important key technology. Digital Pre-Distortion techniques were used to improve the linearity of the power amplifier. The Asymmetric Doherty scheme was used to improve the efficiency of the power amplifier. In this paper, we propose a new structure of Asymmetric Doherty. Drive power amplifier part is separated as main path and peak path, and phase shifter is employed to improve power combine characteristics of the Doherty Amplifier. Also, envelope tracking technology for drive gate bais in drive peak amplifier is used to improve efficiency.

Design of 5 W Current-Mode Class D RF Power Amplifier for GSM Band (GSM대역 5 W급 전류 모드 D급 전력증폭기의 설계)

  • 서용주;조경준;김종헌
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.6
    • /
    • pp.540-547
    • /
    • 2004
  • In this paper, a current - mode class D(CMCD) power amplifier over 70 % power added efficiency at 900 ㎒ is designed and implemented. Based on push-pull class B structure, main power loss due to charge and discharge of output capacitance in switching mode power amplifier is minimized by applying a parallel harmonic control circuit. Experimental CMCD amplifier with 73 % power added efficiency at 3.2 W and 72 % power added efficiency at 5 W are achieved respectively. In addition a characteristic of switching mode power amplifier whose output power is proportional to magnitude of U power is verified.

Design of High Power RF Amplifier (고출력 고주파 증폭기의 설계)

  • Nam, S.H.;Jeon, M.H.;Kim, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.180-182
    • /
    • 1994
  • In an electron storage ring of Pohang Light Source (PLS), electrons lose their energy in every turn by the synchronous radiation. A high power RF amplifier is employed to compensate the electron energy that is lost by the synchronous radiation. The specification of RF amplifier is an continuous output power of 60 kW at 500.082 MHz operating frequency. The power is supplied to RF cavities in the storage ring tunnel. Total number of amplifier system currently required is three. Tile total number will be increased upto five as the operating condition of storage ring is upgraded. The RF amplifier is mainly consisted of a high voltage DC power supply, an intermediate RF power amplifier (IPA), and a klystron tube. In this article, the design of RF amplifier system and characteristics of the klystron tube will be discussed.

  • PDF

A Research on a Cross Post-Distortion Balanced Linear Power Amplifier for Base-Station (기지국용 Cross Post-Distortion 평형 선형 전력 증폭기에 관한 연구)

  • Choi, Heung-Jae;Jeong, Hee-Young;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.11
    • /
    • pp.1262-1270
    • /
    • 2007
  • In this paper, we propose a new distortion cancellation mechanism for a balanced power amplifier structure using the carrier cancellation loop of a feedforward and post-distortion technique. The proposed cross post-distortion balanced linear amplifier can reduce nonlinear components as much as the conventional feedforward amplifier through the output dynamic range and broad bandwidth. Also the proposed system provides higher efficiency than the feedforward. The capacities of power amplifier and error power amplifier in the proposed system are analyzed and compared with those of feedforward amplifier. Also the operation mechanisms of the three kind loops are explained. The proposed cross post-distortion balanced linear power amplifier is implemented at the IMT-2000($f_0=2.14\;GHz$) band. With the commercial high power amplifiers of total power of 240 W peak envelope power fer base-station application, the adjacent channel leakage ratio measurement with wideband code division multiple access 4FA signal shows 18.6 dB improvement at an average output power of 40 dBm. The efficiency of fabricated amplifier Improves about 2 % than the conventional feedforward amplifier.

A Two-Stage Power Amplifier with a Latch-Structured Pre-Amplifier (래치구조의 드라이브 증폭단을 이용한 2단 전력 증폭기)

  • Choi Young-Shig;Choi Heyk-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.295-300
    • /
    • 2005
  • In this paper we have designed a two-stage Class I power amplifier operated at 2.4CHz for Class-1 Bluetooth application. The power amplifier employs class-I topology to exploit its soft-switching property for high efficiency. The latch-structured pre-amplifier with amplifiers makes its output signal as sharp as possible for soft switching of the next power amplifier. It improves the overall efficiency of the proposed power amplifier. It shows 65.8$\%$ PAE, 20dB power gain and 20dBm output power.

High Efficiency Power Amplifier using Analog Predistorter (아날로그 전치왜곡기를 이용한 고효율 전력증폭기)

  • Choi, Jang-Hun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2014
  • This paper presents the Doherty power amplifier with a digitally controlled analog predistorter circuit of Scintera Corp. to produce high power efficiency and high linearity performance. The analog predistorter improves the linearity performance because of controlling amplitude and phase values of input signal in order to improve intermodulation performance of power amplifier. Also, the power amplifier is designed by the Doherty technology to obtain the high efficiency performance. To validate the Scintera's analog predistorter, we are implemented the power amplifier with Doherty method at center frequency 2150 MHz. Compared with the balanced amplifier, the power amplifier is improved above 11% enhanced efficiency and more than 15 dB ACPR improvement.

6-GHz-to-18-GHz AlGaN/GaN Cascaded Nonuniform Distributed Power Amplifier MMIC Using Load Modulation of Increased Series Gate Capacitance

  • Shin, Dong-Hwan;Yom, In-Bok;Kim, Dong-Wook
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.737-745
    • /
    • 2017
  • A 6-GHz-to-18-GHz monolithic nonuniform distributed power amplifier has been designed using the load modulation of increased series gate capacitance. This amplifier was implemented using a $0.25-{\mu}m$ AlGaN/GaN HEMT process on a SiC substrate. With the proposed load modulation, we enhanced the amplifier's simulated performance by 4.8 dB in output power, and by 13.1% in power-added efficiency (PAE) at the upper limit of the bandwidth, compared with an amplifier with uniform gate coupling capacitors. Under the pulse-mode condition of a $100-{\mu}s$ pulse period and a 10% duty cycle, the fabricated power amplifier showed a saturated output power of 39.5 dBm (9 W) to 40.4 dBm (11 W) with an associated PAE of 17% to 22%, and input/output return losses of more than 10 dB within 6 GHz to 18 GHz.

Class E Power Amplifiers using High-Q Inductors for Loosely Coupled Wireless Power Transfer System

  • Yang, Jong-Ryul;Kim, Jinwook;Park, Young-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.569-575
    • /
    • 2014
  • A highly efficient class E power amplifier is demonstrated for application to wireless power transfer system. The amplifier is designed with an L-type matching at the output for harmonic rejection and output matching. The power loss and the effect of each component in the amplifier with the matching circuit are analyzed with the current ratio transmitted to the output load. Inductors with a quality factor of more than 120 are used in a dc feed and the matching circuit to improve transmission efficiency. The single-ended amplifier with 20 V supply voltage shows 7.7 W output power and 90.8% power added efficiency at 6.78 MHz. The wireless power transfer (WPT) system with the amplifier shows 5.4 W transmitted power and 82.3% overall efficiency. The analysis and measurements show that high-Q inductors are required for the amplifier design to realize highly efficient WPT system.

Class-E Power Amplifier with Minimal Standby Power for Wireless Power Transfer System

  • Kim, Bong-Chul;Lee, Byoung-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.250-255
    • /
    • 2018
  • This paper presents a method for minimizing standby power consumption in wireless power transfer (WPT) system via magnetic resonance coupling (MRC) that operates at 6.78 MHz. The proposed circuit controls the required capacitance according to operational condition in order to reduce standby power consumption. Based on an impedance characteristic of the class-E power amplifier, operational principles of the proposed circuit are analyzed. Moreover, to verify the effectiveness of the proposed class-E power amplifier, an 8 W prototype for WPT system is implemented. The measured input power of the proposed class-E power amplifier at standby condition is reduced from 5.81 W to 3.53 W.

Ku-Band Power Amplifier MMIC Chipset with On-Chip Active Gate Bias Circuit

  • Noh, Youn-Sub;Chang, Dong-Pil;Yom, In-Bok
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • We propose a Ku-band driver and high-power amplifier monolithic microwave integrated circuits (MMICs) employing a compensating gate bias circuit using a commercial 0.5 ${\mu}m$ GaAs pHEMT technology. The integrated gate bias circuit provides compensation for the threshold voltage and temperature variations as well as independence of the supply voltage variations. A fabricated two-stage Ku-band driver amplifier MMIC exhibits a typical output power of 30.5 dBm and power-added efficiency (PAE) of 37% over a 13.5 GHz to 15.0 GHz frequency band, while a fabricated three-stage Ku-band high-power amplifier MMIC exhibits a maximum saturated output power of 39.25 dBm (8.4 W) and PAE of 22.7% at 14.5 GHz.

  • PDF