• 제목/요약/키워드: positive surface charge

검색결과 108건 처리시간 0.021초

Electrokinetic Characterization of the Fouled PP Membrane in the Separation of Oily Wastes

  • Hyonseung Dho;Soojung Suh;Lee, Jae-won;Lee, Kune-woo
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 The 6th International Symposium of East Asian Resources Recycling Technology
    • /
    • pp.459-465
    • /
    • 2001
  • The work was initiated to investigate the electrokinetic properties of a MF membrane using streaming potential measurement when oil emulsion was separated. The original and the surface modified PP membrane were examined by using flux and streaming potentials for the characterization of fouling phenomena of the PP membrane. The membrane surface was modified by a radiation grafting technique. The streaming potentials of the PP membranes were varied the charge distribution modifying by changing the pH, ionic strength, and concentrations the surfactants in oil emulsion. The shiftness to the more positive values of isoelectric point of the PP membrane was significant especially in the presence of surfactants or the surface modification.

  • PDF

ZTO 박막의 쇼키접합에 기인하는 자기저항특성 (Magnetoresistance Characteristics due to the Schottky Contact of Zinc Tin Oixide Thin Films)

  • 이향강;오데레사
    • 반도체디스플레이기술학회지
    • /
    • 제18권4호
    • /
    • pp.120-123
    • /
    • 2019
  • The effect of surface plasmon on ZTO thin films was investigated. The phenomenon of depletion occurring in the interface of the ZTO thin film created a potential barrier and the dielectric layer of the depletion formed a non-mass particle called plasmon. ZTO thin film represents n-type semiconductor features, and surface current by plasma has been able to obtain the effect of improving electrical efficiency as a result of high current at positive voltage and low current at negative voltage. It can be seen that the reduction of electric charge due to recombination of electronic hole pairs by heat treatment of compound semiconductors induces higher surface current in semiconductor devices.

Mechanism of Escherichia Coli Removal by Hydroxyapatite

  • Su-Chak Ryu;Dong-Hun Lee;Jae-Hoon Jeong;Sung-Kwang Jo
    • 한국재료학회지
    • /
    • 제34권6호
    • /
    • pp.261-266
    • /
    • 2024
  • Although most strains of escherichia coli (E. coli) are harmless, some serotypes can cause serious food poisoning in humans. It is very difficult to eliminate E. coli from our lives. Here we show that E. coli can be eliminated by hydroxyapatite (HAp). Because HAp has a positive charge, the material and E. coli are attracted through electrostatic interactions. Additionally, because the surface of HAp is porous, it enters the pores of the HAp surface removing them from the environment. The amount of adsorption was observed to increase over time, and the zeta potential value of the material tended to be similar to that of E. coli. This phenomenon is thought to have zeta potential similar to that of E. coli as it is adsorbed onto the HAp surface over time. E. coli stained with crystal violet was spread on a glass slide and HAp porous sol powder was dropped to remove the E. coli. We expect that this analysis will open a new direction for antibacterial materials.

Polytetrafluoroethylene 분말 현탁액을 통한 다공성 박막 제조 및 에너지 발생소자 응용 (Fabrication of Porous Polytetrafluoroethylene thin Film from Powder Dispersion-solution for Energy Nanogenerator Applications)

  • 박일규
    • 한국분말재료학회지
    • /
    • 제24권2호
    • /
    • pp.102-107
    • /
    • 2017
  • Porous polytetrafluoroethylene (PTFE) thin films are fabricated by spin-coating using a dispersion solution containing PTFE powders, and their crystalline properties are investigated after thermal annealing at various temperatures ranging from 300 to $500^{\circ}C$. Before thermal annealing, the film is densely packed and consists of many granular particles 200-300 nm in diameter. However, after thermal annealing, the film contains many voids and fibrous grains on the surface. In addition, the film thickness decreases after thermal annealing owing to evaporation of the surfactant, binder, and solvent composing the PTFE dispersion solution. The film thickness is systematically controlled from 2 to $6.5{\mu}m$ by decreasing the spin speed from 1,500 to 500 rpm. A triboelectric nanogenerator is fabricated by spin-coating PTFE thin films onto polished Cu foils, where they act as an active layer to convert mechanical energy to electrical energy. A triboelectric nanogenerator consisting of a PTFE layer and Al metal foil pair shows typical output characteristics, exhibiting positive and negative peaks during applied strain and relief cycles due to charging and discharging of electrical charge carriers. Further, the voltage and current outputs increase with increasing strain cycle owing to accumulation of electrical charge carriers during charge-discharge.

Microbial Removal Using Layered Double Hydroxides and Iron (Hydr)oxides Immobilized on Granular Media

  • Park, Jeong-Ann;Lee, Chang-Gu;Park, Seong-Jik;Kim, Jae-Hyeon;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • 제15권3호
    • /
    • pp.149-156
    • /
    • 2010
  • The objective of this study was to investigate microbial removal using layered double hydroxides (LDHs) and iron (hydr)oxides (IHs) immobilized onto granular media. Column experiments were performed using calcium alginate beads (CA beads), LDHs entrapped in CA beads (LDH beads), quartz sand (QS), iron hydroxide-coated sand (IHCS) and hematite-coated sand (HCS). Microbial breakthrough curves were obtained by monitoring the effluent, with the percentage of microbial removal and collector efficiency then quantified from these curves. The results showed that the LDH beads were ineffective for the removal of the negatively-charged microbes (27.7% at 1 mM solution), even though the positively-charged LDHs were contained on the beads. The above could be related to the immobilization method, where LDH powders were immobilized inside CA beads with nano-sized pores (about 10 nm); therefore, micro-sized microbes (E. coli = 1.21 ${\mu}m$) could not diffuse through the pores to come into contact with the LDHs in the beads, but adhere only to the exterior surface of the beads via polymeric interaction. IHCS was the most effective in the microbial removal (86.0% at 1 mM solution), which could be attributed to the iron hydroxide coated onto the exterior surface of QS had a positive surface charge and, therefore, effectively attracted the negatively-charged microbes via electrostatic interactions. Meanwhile, HCS was far less effective (35.6% at 1 mM solution) than IHCS because the hematite coated onto the external surface of QS is a crystallized iron oxide with a negative surface charge. This study has helped to improve our knowledge on the potential application of functional granular media for microbial removal.

마이크로 채널 내부 전기삼투 유속 측정을 통한 유리표면의 Zeta-potential 측정 (Zeta-potential Measurement on Glass Surface by Measuring Electro-osmotic Velocity inside a Micro-channel)

  • 한수동;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.80-84
    • /
    • 2005
  • Many important properties in colloidal systems are usually determined by surface charge ($\zeta$-potential) of the contacted solid surface. In this study, $\zeta$-potential of glass $\mu$-channel was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass $\mu$-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The $\zeta$-potential in the glass $\mu$-channel was measured for two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and $\zeta$-potential in the glass surface was also studied. In the range of $0\∼6$mM, the surfactant SDS was added to NaCl solution in four different mole concentrations. As a result, the addition of SDS increases $\zeta$-potential in the surface of the glass $\mu$-channel. The measured $\zeta$-potential was found to vary from-260 to-70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The $\zeta$-potential has a positive sign for the negative particles.

  • PDF

Study of Specific Oligosaccharide Structures Related with Swine Flu (H1N1) and Avian Flu, and Tamiflu as Their Remedy

  • Yoo, Eun-Sun
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권5호
    • /
    • pp.449-454
    • /
    • 2011
  • The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(${\alpha}2$-6) galactose(${\beta}1$-4)glucose or sialic acid(${\alpha}2$-3)galactose(${\beta}1$-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.

Quantitative Structure-Activity Relationships (QSAR) Study on C-7 Substituted Quinolone

  • 이근우;권순영;황선구;이재욱;김호징
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권2호
    • /
    • pp.147-152
    • /
    • 1996
  • To see the quantitative relationship between the structures of the C-7 substituted quinolones and their antibacterial activities, theoretical parameters such as the molecular van der Waals volume, surface area and some electrostatic parameters based on the molecular electrostatic potential, which represent lipophilicity, and some quantum mechanical parameters are introduced as descriptors. The sixteen substituted quinolone derivatives and twenty bacteria are used for the study. It is found that the QSARs of C-7 substituted quinolones are obtained for eleven bacteria and our descriptors are more useful for Gram positive organisms than negative ones. It is also shown that molecular surface area (or molecular Waals volume) of the C-7 substituent and net charge of C-7 atom of the quinolones are the descriptors of utmost importance.

그래핀 산화물-구형 고분자 입자 사이의 흡착 거동 (Adhesion Behavior of Graphene Oxide on Spherical Polymer Particles)

  • 김신우;이상수;이종휘
    • 폴리머
    • /
    • 제37권2호
    • /
    • pp.162-166
    • /
    • 2013
  • 고분자 입자에 그래핀이 코팅된 복합체를 제조하고 구조 및 형태변화를 통한 그래핀의 새로운 응용 가능성이 제기되고 있다. 그래핀이 표면에 흡착된 폴리스티렌 복합입자의 물성제어를 위해서, 물 분산매 하에 혼합방법과 혼합순서를 달리하여 흡착반응 시간과 혼합물 내의 순간적인 상대농도 차이를 조사하였다. 유화중합으로 중합된 폴리스티렌 입자에 폴리에틸렌이민을 흡착시켜 표면에 양전하를 갖게 만든 고분자 입자와, 흑연의 화학적 박리법으로 표면에 음전하를 갖도록 제조된 그래핀 산화물과의 서로 반대되는 전하를 갖는 두 입자의 흡착을 유도한 결과 흡착반응 시간이 길수록, 순간 상대 농도차가 클수록 균질하게 표면 코팅이 만들어지고, 응집이 적은 복합 입자를 제조할 수 있었다.

A New Approach to Surface Imaging by Nano Secondary Ion Mass Spectrometry

  • 홍태은;변미랑;장유진;김종필;정의덕
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.105.1-105.1
    • /
    • 2016
  • Many of the complex materials developed today derive their unique properties from the presence of multiple phases or from local variations in elemental concentration. Simply performing analysis of the bulk materials is not sufficient to achieve a true understanding of their physical and chemical natures. Secondary ion mass spectrometer (SIMS) has met with a great deal of success in material characterization. The basis of SIMS is the use of a focused ion beam to erode sample atoms from the selected region. The atoms undergo a charge exchange with their local environment, resulting in their conversion to positive and negative secondary ions. The mass spectrometric analysis of these secondary ions is a robust method capable of identifying elemental distribution from hydrogen to uranium with detectability of the parts per million (ppm) or parts per billion (ppb) in atomic range. Nano secondary ion mass spectrometer (Nano SIMS, Cameca Nano-SIMS 50) equipped with the reactive ion such as a cesium gun and duoplasmatron gun has a spatial resolution of 50 nm which is much smaller than other SIMS. Therefore, Nano SIMS is a very valuable tool to map the spatial distribution of elements on the surface of various materials In this talk, the surface imaging applications of Nano SIMS in KBSI will be presented.

  • PDF