Browse > Article
http://dx.doi.org/10.4150/KPMI.2017.24.2.102

Fabrication of Porous Polytetrafluoroethylene thin Film from Powder Dispersion-solution for Energy Nanogenerator Applications  

Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.24, no.2, 2017 , pp. 102-107 More about this Journal
Abstract
Porous polytetrafluoroethylene (PTFE) thin films are fabricated by spin-coating using a dispersion solution containing PTFE powders, and their crystalline properties are investigated after thermal annealing at various temperatures ranging from 300 to $500^{\circ}C$. Before thermal annealing, the film is densely packed and consists of many granular particles 200-300 nm in diameter. However, after thermal annealing, the film contains many voids and fibrous grains on the surface. In addition, the film thickness decreases after thermal annealing owing to evaporation of the surfactant, binder, and solvent composing the PTFE dispersion solution. The film thickness is systematically controlled from 2 to $6.5{\mu}m$ by decreasing the spin speed from 1,500 to 500 rpm. A triboelectric nanogenerator is fabricated by spin-coating PTFE thin films onto polished Cu foils, where they act as an active layer to convert mechanical energy to electrical energy. A triboelectric nanogenerator consisting of a PTFE layer and Al metal foil pair shows typical output characteristics, exhibiting positive and negative peaks during applied strain and relief cycles due to charging and discharging of electrical charge carriers. Further, the voltage and current outputs increase with increasing strain cycle owing to accumulation of electrical charge carriers during charge-discharge.
Keywords
Polytetrafluoroethylene; Powder dispersion; Spin coating; Triboelectric nanogenerator;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Z. J. Yu, E. T. Kang, K. G. Neoh and K. L. Tan: Surf. Surf. Coating. Tech., 138 (2001) 48.   DOI
2 C. A. Sperati and H. W. Starkweather: Adv. Polym. Sci., 2 (1961) 465.
3 S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong: Compos. Sci. Tech., 61 (2001) 1189.   DOI
4 K. R. Makinson and D. Tabor: Proc. Roy. Soc. A, 281 (1964) 49.   DOI
5 E. L. Yang: J. Mater. Res., 7 (1992) 3139.   DOI
6 H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu, Z. Wu, Y. Liu, C. P. Wong, Y. Bando and Z. L. Wang: Nano Energy, 2 (2013) 693.   DOI
7 G. Zhu, B. Peng, J. Chen, Q. Jimg and Z. L. Wang: Nano Energy, 14 (2015) 129.
8 S. H. Baek and I. K. Park: J. Korean Powder Metall. Inst., 22 (2015) 331.   DOI
9 Z. Luo, Z. Zhang, W. Wang, W. Liua and Q. Xue: Mater. Chem. Phys., 119 (2010) 40.   DOI
10 H.W. Jr Starkweather: J. Polym. Sci. Polym. Phys., 17 (1979) 73.   DOI
11 R. Scigala and A. Wlochowicz: Acta Polym., 40 (1989) 15.   DOI
12 M. D. Tyona: Adv. Mater. Res., 2 (2013) 195.   DOI
13 X. Chen, S. Xu, N. Yao and Y. Shi: Nano Lett., 10 (2010) 2133.   DOI
14 R. P. Wool: J. Polym. Sci. Polym. Phys., 13 (1975) 1795.   DOI