Browse > Article
http://dx.doi.org/10.4014/jmb.1009.09013

Study of Specific Oligosaccharide Structures Related with Swine Flu (H1N1) and Avian Flu, and Tamiflu as Their Remedy  

Yoo, Eun-Sun (Department of Oriental Medicine Industry, College of Environmental and Natural Sciences, Honam University)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.5, 2011 , pp. 449-454 More about this Journal
Abstract
The infection of pandemic influenza viruses such as swine flu (H1N1) and avian flu viruses to the host cells is related to the following two factors: First, the surface protein such as HA (hemagglutinin) and NA (neuraminidase) of the influenza virus. Second, the specific structure of the oligosaccharide [sialic acid(${\alpha}2$-6) galactose(${\beta}1$-4)glucose or sialic acid(${\alpha}2$-3)galactose(${\beta}1$-4)glucose] on the host cell. After recognizing the specific structure of the oligosaccharide on the surface of host cells by the surface protein of the influenza virus, the influenza virus can secrete sialidase and cleave the sialic acid attached on the final position of the specific structure of the oligosaccharide on the surface of host cells. Tamiflu (oseltamivir), known as a remedy of swine flu, has a saccharide analog structure, especially the sialic acid analog. Tamiflu can inhibit the invasion of influenza viruses (swine flu and avian flu viruses) into the host cells by competition with sialic acid on the terminal position of the specific oligosaccharide on the surface of the host cell. Because of the emergence of Tamiflu resistance, the development of new potent anti-influenza inhibitors is needed. The inhibitors with positive-charge groups have potential as antiviral therapeutics, and the strain specificity must also be resolved.
Keywords
Swine flu (H1N1); Tamiflu; structure; sialidase; sialic acid; (${\alpha}2$-3) linkage;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Amaro, R. E., D. D. Minh, L. S. Cheng, W. M. Lindstrom Jr., A. J. Olson, J. H. Lin, W. W. Li, and J. A. McCammon. 2007. Remarkable loop flexibility in avian influenza N1 and its implications for antiviral drug design. J. Am. Chem. Soc. 129: 7764-7765.   DOI   ScienceOn
2 Aruksakunwong, O., M. Malaisree, P. Decha, P. Sompornpisut, V. Parasuk, S. Pianwanit, and S. Hannongbua. 2007. On the lower susceptibility of oseltamivir to influenza neuraminidase subtype N1 than those in N2 and N9. Biophys. J. 92: 798-807.   DOI   ScienceOn
3 Babu, Y. S., P. Chand, S. Bantia, P. Kotian, A. Dehghani, Y. El- Kattan, et al. 2000. BCX-1812 (RWJ-270201): Discovery of a novel, highly potent, orally active, and selective influenza neuraminidase inhibitor through structure-based drug design. J. Med. Chem. 43: 3482-3486.   DOI   ScienceOn
4 Blick, T. J., A. Sahasrabudhe, M. McDonald, I. J. Owens, P. J. Morley, R. J. Fenton, and J. L. McKimm-Breschkin. 1998. The interaction of neuraminidase and hemagglutinin mutations in influenza virus in resistance to 4-guanidino-Neu5Ac2en. Viology 246: 95-103.   DOI   ScienceOn
5 Bradley, D. 2005. Star role for bacteria in controlling flu pandemic? Nat. Rev. Drug Discov. 4: 945-946.   DOI   ScienceOn
6 Brown, I. H. 2000. The epidemiology and evolution of influenza viruses in pigs. Vet. Microbiol. 74: 29-46.   DOI
7 Brown, I. H., P. A. Harris, J. W. McCauley, and D. J. Alexander. 1998. Multiple genetic reassortment of avian and human influenza A viruses in European pigs, resulting in the emergence of an H1N2 virus of novel genotype. J. Gen. Virol. 79: 2947-2955.
8 Cheng, L. S., R. E. Amaro, D. Xu, W. W. Li, P. W. Arzberger, and J. A. McCammon. 2008. Ensemble-based virtual screening reveals potential novel antiviral compounds for avian influenza neuraminidase. J. Med. Chem. 51: 3878-3894.   DOI   ScienceOn
9 Calfree, D. P. and F. G. Hayden. 1998. New approaches to influenza chemotherapy: Neuraminidase inhibitors. Drug 56: 537-553.   DOI   ScienceOn
10 Chachra, R. and R. C. Rizzo. 2008. Origins of resistance conferred by the R292K neuraminidase mutation via molecular dynamics and free energy calculations. J. Chem. Theory Comput. 4: 1526-1540.   DOI   ScienceOn
11 Laver, G. 2006. Antiviral drugs for influenza: Tamiflu past, present and future. Future Virol. 1: 577-586.   DOI   ScienceOn
12 Collins, P. J., L. F. Haire, Y. P. Lin, J. Liu, R. J. Russell, P. A. Walker, et al. 2008. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature (London) 453: 1258-1261.   DOI   ScienceOn
13 Kim, C. U., W. Lew, M. A. Williams, H. Liu, L. Zhang, S. Swaminathan, et al. 1997. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119: 681-690.   DOI   ScienceOn
14 Kim, C. U., X. Chen, and D. B. Mendel. 1999. Neuraminidase inhibitors as anti-influenza virus agents. Antivir. Chem. Chemother. 10: 141-154.
15 Kosakovsky Pond, S. L. and S. D. W. Frost. 2005. Not so different after all: A comparison of methods for detecting amino acid sites under selection. Mol. Biol. Evol. 22: 1208-1222.   DOI   ScienceOn
16 Landers, J. J., Z. Cao, I. Lee, L. T. Piehler, P. P. Mye, A. Mye, T. Hamouda, A. T. Galecki, and J. R. Baker Jr. 2002. Prevention of influenza pneumonitis by sialic acid-conjugated dendritic polymers. J. Infect. Dis. 186: 1222-1230.   DOI   ScienceOn
17 Layne, S. P., A. S. Monto, and J. K. Taubenberger. 2009. Pandemic influenza: An inconvenient mutation. Science 323: 1560-1561.   DOI
18 Gubareva, L. V., L. Kaiser, and F. G. Hayden. 2000. Influenza virus neuraminidase, inhibitors. Lancet 355: 827-835.   DOI   ScienceOn
19 de Jong, J. C., P. P. Heinen, W. L. A. Loeffen, A. P. van Nieuwstadt, E. C. J. Claas, T. M. Bestebroer, et al. 2001. Antigenic and molecular heterogeneity in recent swine influenza A (H1N1) virus isolates with possible implications for vaccination policy. Vaccine 19: 4452-4464.   DOI   ScienceOn
20 Gallaher, W. R. 2009. Toward a sane and rational approach to management of influenza H1N1 2009. Virol. J. 6: 51-57.   DOI
21 Gubareva, L. V., M. J. Robinson, R. C. Bethell, and R. G. Webster. 1997. Catalytic and framework mutations in the neuraminidase active site of influenza viruses that are resistant to 4-guanidino- Neu5Ac2en. J. Virol. 71: 3385-3390.
22 Xu, X., X. Zhu, R. A. Dwek, J. Stevens, and I. A. Wilson. 2008. Structural characterization of the 1918 influenza virus H1N1 neuraminidase. J. Virol. 82: 10493-10501.   DOI   ScienceOn
23 Hatta, M., P. Gao, P. Halfmann, and Y. Kawaoka. 2001. Molecular basis of high virulence of Hong Kong H5N1 influenza A viruses. Science 7: 1840-1842.
24 Jung, K. and D. S. Song. 2007. Evidence of the cocirculation of influenza H1N1, H1N2 and H3N2 viruses in the pig population of Korea. Vet. Rec. 161: 104-105.   DOI   ScienceOn
25 von Itzstein, M., J. C. Dyason, S. W. Oliver, H. F. White, W. Y. Wu, G. B. Kok, and M. S. Pegg. 1996. A study of the active site of influenza virus sialidase: An approach to the rational design of novel anti-influenza drugs. J. Med. Chem. 39: 388- 391.   DOI   ScienceOn
26 von Itzstein, M., W. Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason, B. Jin, et al. 1993. Rational design of potent sialidasebased inhibitors of influenza virus replication. Nature (London) 363: 418-423.   DOI   ScienceOn
27 Wang, N. X. and J. J. Zheng. 2009. Computational studies of H5N1 influenza virus resistance to oseltamivir. Protein Sci. 18: 707-715.
28 Russell, R. J., L. F. Haire, D. J. Stevens, P. J. Collins, Y. P. Lin, G. M. Blackburn, A. J. Hay, S. J. Gamblin, and J. J. Skehe. 2006. The structure of H5N1 avial influenza neuraminidase suggests new opportunities for drug design. Nature 443: 45-49.   DOI   ScienceOn
29 Racaniello, V. http://www.virology.ws/2009/05/04 influenza virus. Columbia University Medical Center.
30 Rancaniello, V. R. and P. Palese. 1979. Isolation of influenza C virus recombinants. J. Virol. 32: 1006-1014.
31 Schnitzler, S. U. and P. Schnitzler. 2009. An update on swineorigin influenza virus A/H1N1: A review. Virus Genes 39: 279-292.   DOI   ScienceOn
32 Shope, R. E. and P. Lewis. 1931. Swine influenza: Experimental transmission and pathology. J. Exp. Med. 54: 349-359.   DOI
33 Neumann, G., T. Noda, and Y. Kawaoka. 2009. Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature 459: 931-939.   DOI   ScienceOn
34 Ohuchi, M., N. Asaoka, T. Sakai, and R. Ohuchi. 2006. Roles of neuraminidase in the initial stage of influenza virus infection. Microbes Infect. 8: 1287-1293.   DOI   ScienceOn
35 Pensaert, M., K. Ottis, J. Vanderputte, M. M. Kaplan, and P. A. Buchmann. 1981. Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential for man. Bull. World Health Organ. 59: 75-78.
36 Tumpey, T. M. and J. A. Belser. 2009. Resurrected pandemic influenza viruses. Annu. Rev. Microbiol. 63: 79-98.   DOI   ScienceOn
37 Le, Q. M., Y. Sakai-Tagawa, M. Ozawa, M. Ito, and Y. Kawaoka. 2009. Selection of H5N1 influenza virus PB2 during replication in humans. J. Virol. 83: 5278-5281.   DOI   ScienceOn
38 Lew, W., X. Chen, and C. U. Kim. 2000. Discovery and development of GS4104 (oseltamivir): An orally active influenza neuraminidase inhibitor. Curr. Med. Chem. 7: 663-672.   DOI   ScienceOn
39 Taylor, N. R. and M. von Itzstein. 1994. Molecular modeling studies on ligand binding to sialidase from influenza virus and the mechanism of catalysis. J. Med. Chem. 37: 616-624.   DOI   ScienceOn
40 Trifonov, V., H. Khiabanian, B. Greenbaum, and R. Rabadan. 2009. The origin of the recent swine influenza A (H1N1) virus infecting humans. Euro Surveill. 14: 19193.
41 Varghese, J. N., W. G. Laver, and P. M. Colman. 1983. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 A resolution. Nature 303: 35-50.   DOI   ScienceOn
42 Sills, J. 2009. Pandemic influenza: An inconvenient mutation. Science 323: 1560-1561.   DOI
43 Nelson, D. L. and M. M. Cox. 2008. Lehninger's Principles of Biochemistry, pp. 259-260, 5th Ed. W. H. Freeman and Company, New York.
44 Shortridge, K. F., R. G. Webster, W. K. Butterfield, and C. H. Campbell. 1977. Persistence of Hong Kong influenza virus variants in pigs. Science 196: 1454-1455.   DOI
45 Smith, G. J. D., D. Vijaykrishna, J. Bahl, S. J. Lycett, M. Worobey, O. G. Pybus, et al. 2009. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459: 1121-1125.
46 Malaisree, M., T. Rungrotmongkol, P. Decha, P. Intharathep, O. Aruksakunwong, and S. Hannongbua. 2008. Understanding of known drug-target interactions in the catalytic pocket of neuraminidase subtype N1. Proteins 71: 1908-1918.   DOI   ScienceOn
47 Mitrasinovic, P. M. 2009. On the structure-based design of novel inhibitors of H5N1 influenza A virus neuraminidase (NA). Biophys. Chem. 140:. 35-38.   DOI   ScienceOn
48 Morris, G. M., D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, R. K. Belew, and A. J. Olson. 1998. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comp. Chem. 19: 1639-1662.   DOI   ScienceOn