DOI QR코드

DOI QR Code

Fabrication of Porous Polytetrafluoroethylene thin Film from Powder Dispersion-solution for Energy Nanogenerator Applications

Polytetrafluoroethylene 분말 현탁액을 통한 다공성 박막 제조 및 에너지 발생소자 응용

  • Park, Il-Kyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 박일규 (서울과학기술대학교 신소재공학과)
  • Received : 2017.03.24
  • Accepted : 2017.04.06
  • Published : 2017.04.28

Abstract

Porous polytetrafluoroethylene (PTFE) thin films are fabricated by spin-coating using a dispersion solution containing PTFE powders, and their crystalline properties are investigated after thermal annealing at various temperatures ranging from 300 to $500^{\circ}C$. Before thermal annealing, the film is densely packed and consists of many granular particles 200-300 nm in diameter. However, after thermal annealing, the film contains many voids and fibrous grains on the surface. In addition, the film thickness decreases after thermal annealing owing to evaporation of the surfactant, binder, and solvent composing the PTFE dispersion solution. The film thickness is systematically controlled from 2 to $6.5{\mu}m$ by decreasing the spin speed from 1,500 to 500 rpm. A triboelectric nanogenerator is fabricated by spin-coating PTFE thin films onto polished Cu foils, where they act as an active layer to convert mechanical energy to electrical energy. A triboelectric nanogenerator consisting of a PTFE layer and Al metal foil pair shows typical output characteristics, exhibiting positive and negative peaks during applied strain and relief cycles due to charging and discharging of electrical charge carriers. Further, the voltage and current outputs increase with increasing strain cycle owing to accumulation of electrical charge carriers during charge-discharge.

Keywords

References

  1. Z. J. Yu, E. T. Kang, K. G. Neoh and K. L. Tan: Surf. Surf. Coating. Tech., 138 (2001) 48. https://doi.org/10.1016/S0257-8972(00)01131-2
  2. C. A. Sperati and H. W. Starkweather: Adv. Polym. Sci., 2 (1961) 465.
  3. S. Ramakrishna, J. Mayer, E. Wintermantel, and K. W. Leong: Compos. Sci. Tech., 61 (2001) 1189. https://doi.org/10.1016/S0266-3538(00)00241-4
  4. K. R. Makinson and D. Tabor: Proc. Roy. Soc. A, 281 (1964) 49. https://doi.org/10.1098/rspa.1964.0168
  5. E. L. Yang: J. Mater. Res., 7 (1992) 3139. https://doi.org/10.1557/JMR.1992.3139
  6. R. P. Wool: J. Polym. Sci. Polym. Phys., 13 (1975) 1795. https://doi.org/10.1002/pol.1975.180130912
  7. H. Zhang, Y. Yang, Y. Su, J. Chen, C. Hu, Z. Wu, Y. Liu, C. P. Wong, Y. Bando and Z. L. Wang: Nano Energy, 2 (2013) 693. https://doi.org/10.1016/j.nanoen.2013.08.004
  8. G. Zhu, B. Peng, J. Chen, Q. Jimg and Z. L. Wang: Nano Energy, 14 (2015) 129.
  9. S. H. Baek and I. K. Park: J. Korean Powder Metall. Inst., 22 (2015) 331. https://doi.org/10.4150/KPMI.2015.22.5.331
  10. Z. Luo, Z. Zhang, W. Wang, W. Liua and Q. Xue: Mater. Chem. Phys., 119 (2010) 40. https://doi.org/10.1016/j.matchemphys.2009.07.039
  11. H.W. Jr Starkweather: J. Polym. Sci. Polym. Phys., 17 (1979) 73. https://doi.org/10.1002/pol.1979.180170106
  12. R. Scigala and A. Wlochowicz: Acta Polym., 40 (1989) 15. https://doi.org/10.1002/actp.1989.010400104
  13. M. D. Tyona: Adv. Mater. Res., 2 (2013) 195. https://doi.org/10.12989/amr.2013.2.4.195
  14. X. Chen, S. Xu, N. Yao and Y. Shi: Nano Lett., 10 (2010) 2133. https://doi.org/10.1021/nl100812k