DOI QR코드

DOI QR Code

Adhesion Behavior of Graphene Oxide on Spherical Polymer Particles

그래핀 산화물-구형 고분자 입자 사이의 흡착 거동

  • Kim, Sinwoo (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Lee, Sang-Soo (Photo-Electronic Hybrids Research Center, Korea Institute of Science & Technology) ;
  • Lee, Jonghwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
  • 김신우 (중앙대학교 공과대학 화학신소재공학부) ;
  • 이상수 (한국과학기술연구원 광전하이브리드연구센터) ;
  • 이종휘 (중앙대학교 공과대학 화학신소재공학부)
  • Received : 2012.10.06
  • Accepted : 2012.10.23
  • Published : 2013.03.25

Abstract

Graphene-coated polymer particles have attracted research interests due to their emerging applications derived from their controlled structure and morphology. To control the properties of graphene oxide (GO)-polystyrene (PS) composite particles, the adsorption time and instantaneous adsorption conditions were investigated by varying their mixing method. Polystyrene particles prepared by emulsion polymerization were modified to have positive surface charge by adsorption of polyethylene imine (PEI) on the surface of PS particles. GO prepared by the chemical exfoliation method had negative surface charge from the oxygenated groups. The adsorption of the negatively charged GOs onto the positively charged PS particles was successfully completed, and it was found that a longer adsorption time and a greater difference in the instantaneous relative concentration led PS-GO particles to have more homogeneously coated surfaces without aggregation.

고분자 입자에 그래핀이 코팅된 복합체를 제조하고 구조 및 형태변화를 통한 그래핀의 새로운 응용 가능성이 제기되고 있다. 그래핀이 표면에 흡착된 폴리스티렌 복합입자의 물성제어를 위해서, 물 분산매 하에 혼합방법과 혼합순서를 달리하여 흡착반응 시간과 혼합물 내의 순간적인 상대농도 차이를 조사하였다. 유화중합으로 중합된 폴리스티렌 입자에 폴리에틸렌이민을 흡착시켜 표면에 양전하를 갖게 만든 고분자 입자와, 흑연의 화학적 박리법으로 표면에 음전하를 갖도록 제조된 그래핀 산화물과의 서로 반대되는 전하를 갖는 두 입자의 흡착을 유도한 결과 흡착반응 시간이 길수록, 순간 상대 농도차가 클수록 균질하게 표면 코팅이 만들어지고, 응집이 적은 복합 입자를 제조할 수 있었다.

Keywords

Acknowledgement

Supported by : 중앙대학교

References

  1. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 288, 243 (1998). https://doi.org/10.1016/S0009-2614(98)00277-2
  2. H. Zheng, I. Lee, M. F. Rubner, and P. T. Hammond, Adv. Mater., 14, 569 (2002). https://doi.org/10.1002/1521-4095(20020418)14:8<569::AID-ADMA569>3.0.CO;2-O
  3. J. Aizenberg, P. V. Braun, and P. Wiltzius, Phys. Rev. Lett., 84, 2997 (2000). https://doi.org/10.1103/PhysRevLett.84.2997
  4. H. Zheng, M. F. Rubner, and P. T. Hammond, Langmuir, 18, 4505 (2002). https://doi.org/10.1021/la020044g
  5. J. Liu, Circuit World, 19, 4 (1993).
  6. X. E. E. Reynhout, L. Hoekstra, J. Meuldijk, and A. A. H. Drinkenburg, J. Polym. Sci. Part A: Polym. Chem., 41, 2985 (2003). https://doi.org/10.1002/pola.10889
  7. P. H. Wang and C.Y. Pan, Colloid Polym. Sci., 280, 152 (2002). https://doi.org/10.1007/s003960100588
  8. Y. Li, K. Moon, and C. P. Wong, Science, 308, 1419 (2005). https://doi.org/10.1126/science.1110168
  9. Y. Li and C. P. Wong, Mater. Sci. Eng. R: Reports, 51, 1 (2006). https://doi.org/10.1016/j.mser.2006.01.001
  10. F. Caruso, Adv. Mater., 13, 11 (2001). https://doi.org/10.1002/1521-4095(200101)13:1<11::AID-ADMA11>3.0.CO;2-N
  11. G. Kaltenpoth, M. Himmelhaus, L. Slansky, F. Caruso, and M. Grunze, Adv. Mater., 15, 1113 (2003). https://doi.org/10.1002/adma.200304834
  12. K. R. Brown and M. J. Natan, Langmuir, 14, 726 (1998). https://doi.org/10.1021/la970982u
  13. J. L. Vickery, A. J. Patil, and S. Mann, Adv. Mater., 21, 2180 (2009). https://doi.org/10.1002/adma.200803606
  14. S. A. Ju, K. Kim, J. H. Kim, and S. S. Lee, ACS Appl. Mater. Interf., 3, 2904 (2011). https://doi.org/10.1021/am200056t
  15. C. Dionigi, P. Stoliar, G. Ruani, S. D. Quiroga, M. Facchini, and F. Biscarini, J. Mater. Chem., 17, 3681 (2007). https://doi.org/10.1039/b705516c
  16. A. F. Thünemann, D. Schütt, L. Kaufner, U. Pison, and H. Mohwald, Langmuir, 22, 2351 (2006). https://doi.org/10.1021/la052990d
  17. D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010). https://doi.org/10.1039/b917103g
  18. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007). https://doi.org/10.1016/j.carbon.2007.02.034
  19. K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Lett., 9, 1058 (2009). https://doi.org/10.1021/nl8034256
  20. S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006). https://doi.org/10.1038/nature04969
  21. H. Choi, H. Lee, M. K. Lee, and J. Lee, J. Pharm. Sci., 101, 2941 (2012). https://doi.org/10.1002/jps.23206
  22. M. K. Lee, J. Bang, K. Shin, and J. Lee, Crystal Growth & Design, 10, 5187 (2010). https://doi.org/10.1021/cg1009708
  23. S. Jeon and H. Noh, Polymer(Korea), 36, 338 (2012).

Cited by

  1. Fractionation of graphene oxides by size-selective adhesion with spherical particles vol.24, pp.12, 2016, https://doi.org/10.1007/s13233-016-4146-x