Browse > Article
http://dx.doi.org/10.7317/pk.2013.37.2.162

Adhesion Behavior of Graphene Oxide on Spherical Polymer Particles  

Kim, Sinwoo (Department of Chemical Engineering and Materials Science, Chung-Ang University)
Lee, Sang-Soo (Photo-Electronic Hybrids Research Center, Korea Institute of Science & Technology)
Lee, Jonghwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
Publication Information
Polymer(Korea) / v.37, no.2, 2013 , pp. 162-166 More about this Journal
Abstract
Graphene-coated polymer particles have attracted research interests due to their emerging applications derived from their controlled structure and morphology. To control the properties of graphene oxide (GO)-polystyrene (PS) composite particles, the adsorption time and instantaneous adsorption conditions were investigated by varying their mixing method. Polystyrene particles prepared by emulsion polymerization were modified to have positive surface charge by adsorption of polyethylene imine (PEI) on the surface of PS particles. GO prepared by the chemical exfoliation method had negative surface charge from the oxygenated groups. The adsorption of the negatively charged GOs onto the positively charged PS particles was successfully completed, and it was found that a longer adsorption time and a greater difference in the instantaneous relative concentration led PS-GO particles to have more homogeneously coated surfaces without aggregation.
Keywords
composite particle; graphene oxide; adhesion behavior; mixing method;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Li, K. Moon, and C. P. Wong, Science, 308, 1419 (2005).   DOI   ScienceOn
2 Y. Li and C. P. Wong, Mater. Sci. Eng. R: Reports, 51, 1 (2006).   DOI   ScienceOn
3 F. Caruso, Adv. Mater., 13, 11 (2001).   DOI   ScienceOn
4 G. Kaltenpoth, M. Himmelhaus, L. Slansky, F. Caruso, and M. Grunze, Adv. Mater., 15, 1113 (2003).   DOI   ScienceOn
5 K. R. Brown and M. J. Natan, Langmuir, 14, 726 (1998).   DOI   ScienceOn
6 J. L. Vickery, A. J. Patil, and S. Mann, Adv. Mater., 21, 2180 (2009).   DOI   ScienceOn
7 S. A. Ju, K. Kim, J. H. Kim, and S. S. Lee, ACS Appl. Mater. Interf., 3, 2904 (2011).   DOI   ScienceOn
8 C. Dionigi, P. Stoliar, G. Ruani, S. D. Quiroga, M. Facchini, and F. Biscarini, J. Mater. Chem., 17, 3681 (2007).   DOI   ScienceOn
9 A. F. Thünemann, D. Schütt, L. Kaufner, U. Pison, and H. Mohwald, Langmuir, 22, 2351 (2006).   DOI   ScienceOn
10 D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, Chem. Soc. Rev., 39, 228 (2010).   DOI   ScienceOn
11 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).   DOI   ScienceOn
12 K. A. Mkhoyan, A. W. Contryman, J. Silcox, D. A. Stewart, G. Eda, C. Mattevi, S. Miller, and M. Chhowalla, Nano Lett., 9, 1058 (2009).   DOI   ScienceOn
13 S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. B. T. Nguyen, and R. S. Ruoff, Nature, 442, 282 (2006).   DOI   ScienceOn
14 H. Choi, H. Lee, M. K. Lee, and J. Lee, J. Pharm. Sci., 101, 2941 (2012).   DOI   ScienceOn
15 M. K. Lee, J. Bang, K. Shin, and J. Lee, Crystal Growth & Design, 10, 5187 (2010).   DOI   ScienceOn
16 S. Jeon and H. Noh, Polymer(Korea), 36, 338 (2012).
17 S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 288, 243 (1998).   DOI   ScienceOn
18 H. Zheng, I. Lee, M. F. Rubner, and P. T. Hammond, Adv. Mater., 14, 569 (2002).   DOI   ScienceOn
19 J. Aizenberg, P. V. Braun, and P. Wiltzius, Phys. Rev. Lett., 84, 2997 (2000).   DOI   ScienceOn
20 H. Zheng, M. F. Rubner, and P. T. Hammond, Langmuir, 18, 4505 (2002).   DOI   ScienceOn
21 J. Liu, Circuit World, 19, 4 (1993).
22 X. E. E. Reynhout, L. Hoekstra, J. Meuldijk, and A. A. H. Drinkenburg, J. Polym. Sci. Part A: Polym. Chem., 41, 2985 (2003).   DOI   ScienceOn
23 P. H. Wang and C.Y. Pan, Colloid Polym. Sci., 280, 152 (2002).   DOI   ScienceOn