DOI QR코드

DOI QR Code

Mechanism of Escherichia Coli Removal by Hydroxyapatite

  • Su-Chak Ryu (School of Nanomechatonics Engineering, Pusan National University) ;
  • Dong-Hun Lee (School of Nanomechatonics Engineering, Pusan National University) ;
  • Jae-Hoon Jeong (School of Nanomechatonics Engineering, Pusan National University) ;
  • Sung-Kwang Jo (School of Nanomechatonics Engineering, Pusan National University)
  • Received : 2024.03.28
  • Accepted : 2024.05.23
  • Published : 2024.06.27

Abstract

Although most strains of escherichia coli (E. coli) are harmless, some serotypes can cause serious food poisoning in humans. It is very difficult to eliminate E. coli from our lives. Here we show that E. coli can be eliminated by hydroxyapatite (HAp). Because HAp has a positive charge, the material and E. coli are attracted through electrostatic interactions. Additionally, because the surface of HAp is porous, it enters the pores of the HAp surface removing them from the environment. The amount of adsorption was observed to increase over time, and the zeta potential value of the material tended to be similar to that of E. coli. This phenomenon is thought to have zeta potential similar to that of E. coli as it is adsorbed onto the HAp surface over time. E. coli stained with crystal violet was spread on a glass slide and HAp porous sol powder was dropped to remove the E. coli. We expect that this analysis will open a new direction for antibacterial materials.

Keywords

Acknowledgement

This work supported by a 2-Year Research Grant Pusan National University.

References

  1. C. Soanes, Oxford Dictionary of English, 3rd ed., p.2112, Oxford University Press, Oxford, UK (2010).
  2. R. L. Vogt and L. Dippold, Public Health Rep., 120, 174 (2005).
  3. U.S. Centers for Disease Control and Prevention. National center for emerging and zoonotic infectious diseases (NCE ZID). Retrieved October 6, 2012 from https://www.cdc.gov/ncezid/index.html
  4. D. A. Rasko, M. J. Rosovitz, G. S. A. Myers, E. F. Mongodin, W. F. Fricke, P. Gajer, J. Crabtree, M. Sebaihia, N. R. Thomson, R. Chaudhuri, I. R. Henderson, V. Sperandio and J. Ravel, J. Bacteriol., 190, 6881 (2008).
  5. M. M. Levine and R. Edelman, Epidemiol. Rev., 6, 31-51 (1983).
  6. S. C. Whipp, M. A. Rasmussen and W. C. Cray Jr., J. Am. Vet. Med. Assoc., 204, 1168 (1994).
  7. S. D. Reid, C. J. Herbelin, A. C. Bumbaugh, R. K. Selander and T. S. Whittam, Nature, 406, 64 (2000).
  8. K. Gupta, D. Scholes and W. E. Stamm, JAMA, J. Am. Med. Assoc., 281, 736 (1999).
  9. E. F. Avni, D. Van Gansbeke, Y. Thoua, C. Matos, V. Marconi, L. Lemaitre and C. C. Schulman, Pediatr. Radiol., 18, 134 (1988).
  10. K. A. Kudsk, J. M. Stone, G. Carpenter and G. F. Sheldon, J. Trauma Acute Care Surg., 23, 605 (1983).
  11. D. H. Ahrenholz and R. L. Simmons, Surgery, 88, 41 (1980).
  12. T. A. Drake, J. Cheng, A. Chang and F. B. Taylor, Am. J. Pathol., 142, 1458 (1993).
  13. I. Orly, M. Gregoire, J. Menanteau, M. Heughebaert and B. Kerebel, Calcif. Tissue Int., 45, 20 (1989).
  14. A. Fritsch, L. Dormieux, C. Hellmich and J. Sanahuja, J. Biomed. Mater. Res., Part A, 88, 149 (2009).
  15. A. Fritsch, L. Dormieux, C. Hellmich and J. Sanahuja, J. Mater. Sci., 42, 8824 (2007).
  16. G. Yin, Z. Liu, J. Zhan, F. Ding and N. Yuan, Chem. Eng. J., 87, 181 (2002).
  17. M. Wakamura, K. Hashimoto and T. Watanabe, Langmuir, 19, 3428 (2003).
  18. W. Zhang, B. Rittmann and Y. Chen, Environ. Sci. Technol., 45, 2172 (2011).
  19. C. Liu, D. Yang, Y. Wang, J. Shi and Z. Jian, J. Nanopart. Res., 14, 1084 (2012).
  20. S. Lowell and J. E. Shields, Powder Surface Area and Porosity, Vol. 2, p.264, Chapman & Hall, London, UK (1991).