• 제목/요약/키워드: positive definite matrix

검색결과 105건 처리시간 0.025초

Poisson linear mixed models with ARMA random effects covariance matrix

  • Choi, Jiin;Lee, Keunbaik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권4호
    • /
    • pp.927-936
    • /
    • 2017
  • To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.

GENERALIZED STATIONARY ITERATIVE METHOD FOR SOLVING LINEAR SYSTEMS

  • Yun, Jae-Heon;Kim, Sang-Wook
    • Journal of applied mathematics & informatics
    • /
    • 제5권2호
    • /
    • pp.383-392
    • /
    • 1998
  • This paper proposes Generalized Stationary Iterative called GSI method. It is shown that the existing stationary iterative methods are special cases of GSI method. Convergence properties of this method are provided and their numerical experiments for linear systems with symmetric positive definite matrix are also provided.

THE EXTREMAL RANKS AND INERTIAS OF THE LEAST SQUARES SOLUTIONS TO MATRIX EQUATION AX = B SUBJECT TO HERMITIAN CONSTRAINT

  • Dai, Lifang;Liang, Maolin
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.545-558
    • /
    • 2013
  • In this paper, the formulas for calculating the extremal ranks and inertias of the Hermitian least squares solutions to matrix equation AX = B are established. In particular, the necessary and sufficient conditions for the existences of the positive and nonnegative definite solutions to this matrix equation are given. Meanwhile, the least squares problem of the above matrix equation with Hermitian R-symmetric and R-skew symmetric constraints are also investigated.

A Cholesky Decomposition of the Inverse of Covariance Matrix

  • Park, Jong-Tae;Kang, Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.1007-1012
    • /
    • 2003
  • A recursive procedure for finding the Cholesky root of the inverse of sample covariance matrix, leading to a direct solution for the inverse of a positive definite matrix, is developed using the likelihood equation for the maximum likelihood estimation of the Cholesky root under normality assumptions. An example of the Hilbert matrix is considered for an illustration of the procedure.

  • PDF

Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models

  • Kim, Jiyeong;Sohn, Insuk;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제24권1호
    • /
    • pp.81-96
    • /
    • 2017
  • Cumulative logit random effects models are typically used to analyze longitudinal ordinal data. The random effects covariance matrix is used in the models to demonstrate both subject-specific and time variations. The covariance matrix may also be homogeneous; however, the structure of the covariance matrix is assumed to be homoscedastic and restricted because the matrix is high-dimensional and should be positive definite. To satisfy these restrictions two Cholesky decomposition methods were proposed in linear (mixed) models for the random effects precision matrix and the random effects covariance matrix, respectively: modified Cholesky and moving average Cholesky decompositions. In this paper, we use these two methods to model the random effects precision matrix and the random effects covariance matrix in cumulative logit random effects models for longitudinal ordinal data. The methods are illustrated by a lung cancer data set.

Robust Optimal Control of Robot Manipulators with a Weighting Matrix Determination Algorithm

  • Kim, Mi-Kyung;Kang, Hee-Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2004-2009
    • /
    • 2003
  • A robust optimal control design is proposed in this study for rigid robotic systems under the unknown load and the other uncertainties. The uncertainties are quadratically bounded for some positive definite matrix. Iterative method finding the Q weighting matrix is shown. Computer simulations have been done for a weight-lifting operation of a two-link manipulator and the result of the simulation shows that the proposed algorithm is very effective for a robust control of robotic systems.

  • PDF

Negative binomial loglinear mixed models with general random effects covariance matrix

  • Sung, Youkyung;Lee, Keunbaik
    • Communications for Statistical Applications and Methods
    • /
    • 제25권1호
    • /
    • pp.61-70
    • /
    • 2018
  • Modeling of the random effects covariance matrix in generalized linear mixed models (GLMMs) is an issue in analysis of longitudinal categorical data because the covariance matrix can be high-dimensional and its estimate must satisfy positive-definiteness. To satisfy these constraints, we consider the autoregressive and moving average Cholesky decomposition (ARMACD) to model the covariance matrix. The ARMACD creates a more flexible decomposition of the covariance matrix that provides generalized autoregressive parameters, generalized moving average parameters, and innovation variances. In this paper, we analyze longitudinal count data with overdispersion using GLMMs. We propose negative binomial loglinear mixed models to analyze longitudinal count data and we also present modeling of the random effects covariance matrix using the ARMACD. Epilepsy data are analyzed using our proposed model.

로봇 매니퓰레이터의 강인제어를 위한 최적제어로의 접근 (An Optimal Control Approach to Robust Control of Robot Manipulators)

  • 김미경;강희준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2003
  • An optimal control approach to robust control design is proposed in this study for rigid robotic systems under the unknown load and the other uncertainties. The uncertainties are quadratically bounded for some positive definite matrix. Iterative method to find the matrix is shown. Simulations arc made for a weight-lifting operation of a two-link manipulator and the robust control performance of robotic systems by the proposed algorithm is remarkable.

  • PDF

ITERATIVE METHODS FOR LARGE-SCALE CONVEX QUADRATIC AND CONCAVE PROGRAMS

  • Oh, Se-Young
    • 대한수학회논문집
    • /
    • 제9권3호
    • /
    • pp.753-765
    • /
    • 1994
  • The linearly constrained quadratic programming(QP) considered is : $$ min f(x) = c^T x + \frac{1}{2}x^T Hx $$ $$ (1) subject to A^T x \geq b,$$ where $c,x \in R^n, b \in R^m, H \in R^{n \times n)}$, symmetric, and $A \in R^{n \times n}$. If there are bounds on x, these are included in the matrix $A^T$. The Hessian matrix H may be positive definite or negative semi-difinite. For large problems H and the constraint matrix A are assumed to be sparse.

  • PDF