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THE EXTREMAL RANKS AND INERTIAS OF THE LEAST

SQUARES SOLUTIONS TO MATRIX EQUATION AX = B

SUBJECT TO HERMITIAN CONSTRAINT†
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Abstract. In this paper, the formulas for calculating the extremal ranks
and inertias of the Hermitian least squares solutions to matrix equation
AX = B are established. In particular, the necessary and sufficient condi-
tions for the existences of the positive and nonnegative definite solutions

to this matrix equation are given. Meanwhile, the least squares problem
of the above matrix equation with Hermitian R-symmetric and R-skew
symmetric constraints are also investigated.
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1. Introduction

As is well-known, many problems in matrix theory and scientific computing
are closely related to the maximal and minimal ranks (abbreviated to extremal
ranks) of block matrix or matrix expressions with variant entries. There have
been many experts and scholars making their attention to this theme (see, e.g [1-
10]). Recently, Yongge Tian has derived a series of elegant results for calculating
the extremal ranks and inertias of some Hermitian linear or nonlinear matrix
expressions with one or more variable matrices ([11-15]). In addition, the least
square problem of matrix equation has also been studied by using the matrix
rank method (see, e.g [16-19]). The following concept was put forward by Trench
in [20]:
Let R ∈ Cn×n be a nontrivial Hermitian involutory matrix, i.e., R = R∗ =
R−1 ̸= In. We say that X ∈ Cn×n is Hermitian R-symmetric (R-skew symmet-
ric) if X∗ = X and RXR = X (X∗ = X and RXR = −X).
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Motivated by the work mentioned above, we in this paper investigate the
extremal ranks and inertias of the LS solutions of the following matrix equation

Ax = B (1.1)

where A,B ∈ Cm×n are given matrices, and the unknown matrix X ∈ Cn×n is
Hermitian, Hermitian R-symmetric, or Hermitian R-skew symmetric.

Throughout this paper, Cn
h denotes the set of all Hermitian matrices with

orders n. The symbols A+, r(A) and R(A) stand for the Moore-Penrose inverse,
the rank and the range (column space) of a complex matrix A, respectively.
Write A > 0 (A ≥ 0) if A is Hermitian positive (nonnegative) definite, and
A > B (A ≥ B) in the Löwner partial ordering if A−B is positive (nonnegative)
definite, where A and B with the same sizes are Hermitian. In addition, the
inertia of a Hermitian matrix M is defined to be the triplet

In(M) = {i+(M), i−(M), i0(M)},

where i+(M), i−(M) and i0(M) are the numbers of the positive, negative and
zero eigenvalues of M counted with multiplicities, respectively. Moreover, EA =
Im −AA+ and FA = In −A+A are two orthogonal projectors of A ∈ Cm×n.

The remainder of this paper is organized as follows: In section 2, some re-
sults related to rank and inertia will be introduced. In section 3, the extremal
ranks and inertias of the Hermitian LS solutions of matrix equation (1.1) will
be derived. Furthermore, the extremal ranks and inertias of the Hermitian R-
symmetric and R-skew symmetric solutions to the LS problem of this matrix
equation will be given in section 4.

2. Preliminary knowledge

In this section, we introduce some useful conclusions with respect to the ranks
and inertias of block matrices or matrix expressions, which will be utilized in
the latter part of this paper.

For the convenience of our expression, we give some results about rank (iner-
tia) of a (Hermitian) matrix as a lemma, which is obvious from the definition.

Lemma 2.1. Let S be a set consisting of matrices over Cm×m, and H be a set
consisting of Hermitian matrices over Cm

h . Then
(a) There exists a nonsingular matrix X ∈ S if and only if maxX∈S r(X) = m.
(b) All matrices in S is nonsingular if and only if minX∈S r(X) = m.
(c) There exists a matrix X ∈ H such that X > 0 (X < 0) if and only if
maxX∈H i+(X) = m (maxX∈H i−(X) = m).
(d) All X ∈ H satisfy X > 0 (X < 0) if and only if minX∈H i+(X) = m
(minX∈H i−(X) = m).
(e) There exists X ∈ H such that X ≥ 0 (X ≤ 0) if and only if minX∈H i−(X) =
0 (minX∈H i+(X) = 0).
(f) All X ∈ H satisfy X ≥ 0 (X ≤ 0) if and only if maxX∈H i−(X) = 0
(maxX∈H i+(X) =0).
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Lemma 2.2 ([5]). Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n. Then
r[A B] = r(A) + r(EAB) = r(B) + r(EBA),

r

[
A
C

]
= r(A) + r(CFA) = r(C) + r(AFC),

r

[
A B
C O

]
= r(B) + r(C) + r(EBAFC).

Lemma 2.3 ([12]). Let M =

[
A B
B∗ 0

]
, where A ∈ Cm

h , B ∈ Cm×n are given.

Then i±(M) = r(B) + i±(EBAEB).

Lemma 2.4 ([11, 12]). Suppose that the conditions are the same as in Lemma
2.3. Then

max
X∈Cn

h

r(A−BXB∗) = r[A B], min
X∈Cn

h

r(A−BXB∗) = 2r[A B]− r(M),

max
X∈Cn

h

i±(A−BXB∗) = i±(M), min
X∈Cn

h

i±(A−BXB∗) = r[A B]− i∓(M).

Lemma 2.5 ([12]). Let A,B,C,D and P,Q be matrices such that the expressions
D − CA+B and D − CP+AQ+B are defined, respectively. Then

r(D − CA+B) = r

[
A∗AA∗ A∗B
CA∗ D

]
− r(A). (2.1)

r(D − CP+AQ+B) = r

 P ∗AQ∗ P ∗PP ∗ 0
Q∗QQ∗ 0 Q∗B

0 CP ∗ −D

− r(P )− r(Q). (2.2)

Particularly, if A ∈ Cm
h , B ∈ Cm×n and D ∈ Cm

h . Then

i±(D −B∗A+B) = i±

[
A3 AB

(AB)∗ D

]
− i±(A). (2.3)

Lemma 2.6 ([12]). Let A ∈ Cm
h , B ∈ Cn

h and P,Q ∈ Cm×n. Then i±(P
∗AP ) ≤

i±(A). In particular,

(a) r(P ∗AP ) = r(A) if and only if i+(P
∗AP ) = i+(A), i−(P

∗AP ) = i−(A).

(b) If P ∗AP = B and Q∗BQ = A, then i±(A) = i±(B) and r(A) = r(B).

Lemma 2.7 ([21]). Let A ∈m×n, B ∈ Cm×k and C ∈ Cl×k be given. Then,

max
X∈Ck×l

r(A−BXC) = min

{
r[A B], r

[
A
C

]}
,

min
X∈Ck×l

r(A−BXC) = r[A B] + r

[
A
C

]
− r

[
A B
C 0

]
.
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3. Extremal ranks and inertias of the Hermitian LS solutions to
matrix equation (1.1)

The following lemma quoted from Trench [20] is necessary.

Lemma 3.1. Let A,B ∈ Cm×n be given matrices, and assume that rank(A) = k
and A = ΦΣΩ∗ is the singular value decomposition of A, where Φ ∈ Cm×m and
Ω ∈ Cn×n are unitary matrices, Σ = diag(σ1, σ2, . . . , σk) > 0 and σj is the
singular value. Define

S = (sij) = Φ∗(BA∗ −AB∗)Φ,

then the Hermitian LS solutions to matrix equation (1.1) can be expressed as

X = X0 −
1

2
ΩTΩ∗ + FAHFA, (3.1)

whereX0 = (In − 1

2
A+A)(A+B)∗ +A+B(In − 1

2
A+A), T = (tij) ∈ Cn

h, (3.2)

tij =


σ2
j−σ2

i

σiσj(σ2
i+σ2

j )
sij 1 ≤ i, j ≤ k,

0, otherwise,

and H ∈ Cn
h is arbitrary. Particularly, if AB∗ = BA∗, then T = 0 in (3.1).

Let S1 be the collections of the Hermitian LS solutions of matrix equation
(1.1), namely,

S1 = {X | ∥AX −B∥ = min, X ∈ Cn
h}

. Hence, we have the following theorem.

Theorem 3.1. Let A,B be given matrices as in (1.1). Setting

T1 =


AB∗A 0 0 AA∗A 0 0

0 A∗BA∗ 0 0 A∗AA∗ 0
AA∗A 0 0 0 0 A

0 A∗AA∗ 0 0 0 A∗A
0 0 A∗AA∗ 0 0 A∗B
0 0 2A∗ −A∗A A∗ ΩTΩ∗

,

T2 =

 0 A∗AA∗ A∗

AA∗A 0 AA∗BA∗

A AB∗AA∗ AΩTΩ∗A∗

.
Then

max
X∈S1

r(X) = n+ r(T1)− 6r(A), (3.3)

min
X∈S1

r(X) = 2r(T1)− r(T2)− 8r(A), (3.4)
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max
X∈S1

i±(X) =n+ i∓(T2)− 2r(A), (3.5)

min
X∈S1

i±(X) =r(T1)− i±(T2)− 4r(A). (3.6)

In consequence,

(a) There exists a nonsingular matrix X ∈ S1 if and only if r(T1) = 6r(A).

(b) All matrices in S1 is nonsingular if and only if 2r(T1) = n+ r(T2)+ 8r(A).

(c) There exists a matrix X ∈ S1 such that X > 0 (X < 0) if and only if
i−(T2) = 2r(A) (i+(T2) = 2r(A)).

(d) Any matrix X ∈ S1 satisfy X > 0 (X < 0) if and only if r(T1) = n +
i+(T2) + 4r(A) (r(T1) = n+ i−(T2) + 4r(A)).

(e) There exists a matrix X ∈ S1 such that X ≥ 0 (X ≤ 0) if and only if
r(T1) = i−(T2) + 4r(A) (r(T1) = i+(T2) + 4r(A)).

(f) Any matrix X ∈ S1 satisfy X ≥ 0 (X ≤ 0) if and only if n+ i+(T2) = 2r(A)
(n+ i−(T2) = 2r(A)).

Proof. Applying Lemma 2.4 to X as given in (3.1), we obtain that

max
H∈Cn

h

r(X) = r[−N, FA], min
H∈Cn

h

r(X) = 2r[−N, FA]− r(M). (3.7)

max
H∈Cn

h

i±(X) = i∓(M), min
H∈Cn

h

i±(X) = r[−N, FA]− i±(M). (3.8)

where

M =

(
−N FA

FA 0

)
and

N = X0 −
1

2
ΩTΩ∗

.

Now we simplify r[N, FA] and i±(M) by the three types of elementary block
matrix operations, and elementary block congruence matrix operations (see [12]
for details), respectively.

It follows from Lemma 2.2 that

r[N, FA] =n− r(A)

+ r

[
A+B +

1

2
(A+AB∗(A+)∗ −A+BA+A−A+AΩTΩ∗)

]
.
(3.9)
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Note that A+AΩTΩ∗ = ΩTΩ∗, then applying the formula (2.2) in Lemma 2.5
to the third item in (3.7), we obtain

r

[
A+B +

1

2
(A+AB∗(A+)∗ −A+BA+A−A+AΩTΩ∗)

]
= r

[
−ΩTΩ∗ + 2A+B +A∗(A∗)+B∗(A+)∗ −A+BA+A

]

= r



A∗B 0 0 A∗AA∗ 0 0 0
0 AB∗A 0 0 AA∗A 0 0
0 0 A∗BA∗ 0 0 A∗AA∗ 0
In 0 0 0 0 0 −In
0 AA∗A 0 0 0 0 A
0 0 A∗AA∗ 0 0 0 A∗A
0 0 0 2A∗ −A∗A A∗ ΩTΩ∗

− n− 5r(A)

= r(T1)− 5r(A).
(3.10)

Moreover, applying Lemma 2.3 to the block matrix M and simplifying by
Lemma 2.6 (b) follow that

i±(M) = r(FA) + i∓(A
+ANA+A)

= i∓
[
A+AB∗(A+)∗ +A+BA∗(A+)∗ −A+AΩTΩ∗A∗(A+)∗

]
+ n− r(A)

= i∓
[
AB∗AA+ +AA+BA∗ −AΩTΩ∗A∗]+ n− r(A)

= i±
[
AΩTΩ∗A∗ −AB∗AA+ −AA+BA∗]+ n− r(A).

(3.11)
From (2.3), we derive

i±
[
AΩTΩ∗A∗ −AB∗AA+ −AA+BA∗]

= i±

[
AΩTΩ∗A∗ − [AB∗A Im]

[
A∗

A

]+ [
A∗BA∗

Im

]]

= i±


[

A∗

A

]3 [
A∗

A

] [
A∗BA∗

Im

]
[AB∗A Im]

[
A∗

A

]
AΩTΩ∗A∗

 −i±
[

A∗

A

]

= i±(T2)− r(A).
(3.12)

In addition, since M and T2 are Hermitian, then

r(M) = i+(M) + i−(M)andr(T2) = i+(T2) + i−(T2). (3.13)

Substituting (3.8)-(3.12) into (3.6)-(3.7) deduces that (3.2)-(3.5) hold. And the
results (a)-(f) follow from applying Lemma 2.1 to (3.2)-(3.5). �

If the matrices A and B given in Theorem 3.1 satisfy AB∗ = BA∗, then
Theorem 3.1 can be simplified, that is,
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Corollary 3.2. Let AB∗ = BA∗ in Theorem 3.1, then

max
X∈S

r(X) = n− r(A) + r(A∗B), (3.14)

min
X∈S

r(X) = 2r(A∗B)− r(AB∗), (3.15)

max
X∈S

i±(X) = n− r(A) + i±(AB∗), (3.16)

min
X∈S

i± (X) = r(A∗B)− i∓(AB∗). (3.17)

In consequence,

(a) There exists a nonsingular matrix X ∈ S if and only if r(A) = r(A∗B).

(b) All matrices in S is nonsingular if and only if 2r(A∗B) = n+ r(AB∗).

(c) There exists a matrix X ∈ S such that X > 0 (X < 0) if and only if
i+(AB

∗) = r(A) (i−(AB
∗) = r(A)).

(d) Any matrix X ∈ S satisfy X > 0 (X < 0) if and only if r(A∗B) = n +
i−(AB∗) (r(A∗B) = n+ i+(AB∗)).

(e) There exists a matrix X ∈ S such that X ≥ 0 (X ≤ 0) if and only if
r(A∗B) = n+ i+(AB

∗) (r(A∗B) = n+ i−(AB∗)).

(f) Any matrix X ∈ S satisfy X ≥ 0 (X ≤ 0) if and only if r(A) = n+ i−(AB∗)
(r(A) = n+ i+(AB

∗)).

Proof. From Lemma 3.1, AB∗ = BA∗ deduces T = 0 in (3.1). Then we get

r[N, FA] = n− r(A) + r

[
A+B +

1

2
(A+AB∗(A+)∗ −A+BA+A−A+AΩTΩ∗)

]
= n− r(A) + r(A+B) = n− r(A) + r(A∗B), (3.18)

i±(M) = r(FA) + i∓(A
+ANA+A) = n− r(A) + i∓[A

+AB∗(A+)∗]

= n− r(A) + i∓(AB∗AA+)

= n− r(A) + i∓(AB∗), (3.19)

and

r(M) = 2n− 2r(A) + r(AB∗). (3.20)

Therefore, substituting (3.17)-(3.19) into (3.6)-(3.7) yields (3.13)-(3.16). �

In addition, if AB∗ = BA∗ and AA+B = B, or equivalently, AB∗ = BA∗

and R(B) ⊆ R(A), i.e., matrix equation (1.1) is consistent for Hermitian X.
In this case, it is easy to verify that r(A∗B) = r(B), substituting it into the
formulas (3.13)-(3.16), then we obtain the same results as proposed in Tian [12].
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Corollary 2. Assume that matrix equation (1.1) is consistent for Hermitian
X, that is, AB∗ = BA∗ and AA+B = B, then,

max
AX=B,X∈Cn

h

r(X) = n− r(A) + r(B)}, min
AX=B,X∈Cn

h

r(X) = 2r(B)− r(AB∗).

max
AX=B,X∈Cn

h

i±(X) = n− r(A) + i±(AB
∗), min

AX=B,X∈Cn
h

i±(X) = r(B)− i∓(AB∗).

Remark 3.1. The extremal ranks and inertias of the Hermitian LS solutions to
matrix equations AX = B,XC = D can be obtained by Theorem 3.1. In fact,

let Ã =

[
A
C∗

]
and B̃ =

[
B
D∗

]
. Then the LS problem of matrix equations

AX = B,XC = D is equivalent to that of matrix equation ÃX = B̃, X ∈ Cn
h.

4. Extremal ranks and inertias for Hermitian R-symmetric and
R-skew symmetric LS problems

In this section, as application of Theorem 3.1, we study the extremal ranks
and inertias of the Hermitian R-symmetric and Hermitian R-skew symmetric LS
solutions of matrix equation (1.1), respectively.

Let R ∈ Cn×n be a nontrivial Hermitian involution. Assume that positive
integers s and t are respectively the dimensions of the eigenspaces of R associated
with the eigenvalues λ = 1 and λ = −1, thus s + t = n. Then, from [20], we
know that

X ∈ Cn×n is Hermitian R-symmetric if and only if

X = [P Q]

[
X1

X2

] [
P ∗

Q∗

]
, (4.1)

and X ∈ Cn×n is Hermitian R-skew symmetric if and only if

X = [P Q]

[
X3

X∗
3

] [
P ∗

Q∗

]
, (4.2)

where P ∈ Cn×s consists of the ortho-normal bases of the eigen-space to λ = 1,
and Q ∈ Cn×t to λ = −1. X1 ∈ Cs

h, X2 ∈ Ct
h, X3 ∈ Cs×t are arbitrary.

For matrices A,B ∈ Cm×n as given in (1.1), denote

[P Q] = [A1 A2] and B[P Q] = [B1 B2] (4.3)

with A1, B1 ∈ Cm×s and A2, B2 ∈ Cm×t. Combining the equalities (4.1)-(4.3)
with (1.1), we know that the Hermitian R-symmetric LS problem of (1.1) is
equivalent to that of the following matrix equations

A1X1 = B1 and A2X2 = B2 with X1 ∈ Cs
h, X2 ∈ Ct

h. (4.4)

And the Hermitian R-skew symmetric LS problem of (1.1) is equivalent to
that of the following matrix equations

A1X3 = B2 and A2X
∗
3 = B1 with X3 ∈ Cs×t. (4.5)
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We need the following lemmas.

Lemma 4.1 ([20]). Let A,B ∈ Cm×n be given matrices having the partition
as in (4.3), and R ∈ Cn×n be a nontrx ivial unitary involution. For j = 1, 2,
assume that Aj = ΦjΣjΩ

∗
j is the singular value decomposition of Aj, where

Φj ∈ Cm×m, Ω1 ∈ Cs×s and Ω2 ∈ Ct×t are unitary matrices, Σj consisting of
the singular values of Aj is a diagonal matrix. Define

Sj = Φ∗
j (BjA

∗
j −AjB

∗
j )Φj.

Then the Hermitian R-symmetric LS solutions of matrix equation (1.1) can be
written as in (4.1), and

Xj = Xj −
1

2
ΩjTjΩ

∗
j + FAjHjFAj , j = 1, 2, (4.6)

where X1 = (Is − 1
2A

+
1 A1)(A

+
1 B1)

∗ +A+
1 B1(Is − 1

2A
+
1 A1),

X2 = (It− 1
2A

+
2 A2)(A

+
2 B2)

∗+A+
2 B2(It− 1

2A
+
2 A2), Tj related to Sj and Σj(j =

1, 2) is a fixed matrix. H1 ∈ Cs
h and H2 ∈ Ct

h are arbitrary.
Particularly, if AjB

∗
j = BjA

∗
j , then Tj = 0.

Lemma 4.2 ([20]). Suppose that the conditions are the same as in Lemma 4.1.
Define S3 = Φ∗

1(B2A
∗
2 −A1B

∗
1)Φ2,

then the Hermitian R-skew symmetric LS solutions of matrix equation (1.1) can
be expressed as in (4.2), and

X3 = X3 − Ω1T3Ω
∗
2 + FA1H3FA2 , (4.7)

where X3 = A+
1 B2 + FA1(A

+
2 B1)

∗, T3 related to S3 and Σj (j = 1, 2) is a
fixed matrix, and H3 ∈ Cs×t is arbitrary. Particularly, if B2A

∗
2 = A1B

∗
1 , then

T3 = 0.

S2 = {X | ∥AX −B∥ = min, X ∈ Cn
h and RXR = X}.

Then from Lemma 4.1, we have the following theorem.

Theorem 4.1. Given matrices A,B ∈ Cm×n, and the nontrivial involution
R ∈ Cn×n. For j = 1, 2, Ωj , Tj as in Lemma 4.1, let

Tj1 =



AjB
∗
jAj 0 0 AjA

∗
jAj 0 0

0 A∗
jBjA

∗
j 0 0 A∗

jAjA
∗
j 0

AjA
∗
jAj 0 0 0 0 Aj

0 A∗
jAjA

∗
j 0 0 0 A∗

jAj

0 0 A∗
jAjA

∗
j 0 0 A∗

jBj

0 0 2A∗
j −A∗

jAj A∗
j ΩjTjΩ

∗
j

,

Tj2 =

 0 A∗
jAjA

∗
j A∗

j

AjA
∗
jAj 0 AjA

∗
jBjA

∗
j

Aj AjB
∗
jAjA

∗
j AjΩjTjΩ

∗
jA

∗
j

,
then,
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max
X∈S2

r(X) = s+ t+ r(T11) + r(T12)− 6r(A1)− 6r(A2), (4.8)

min
X∈S2

r(X) = 2r(T11) + 2r(T21)− r(T12)− r(T22)− 8r(A1)− 8r(A2), (4.9)

max
X∈S2

i±(X) = s+ t+ i∓(T12) + i∓(T22)− 2r(A1)− 2r(A2), (4.10)

min
X∈S2

i±(X) = r(T11) + r(T21)− i±(T12)− i±(T22)− 4r(A1)− 4r(A2). (4.11)

In consequence,

(a) There exists a nonsingular matrix X ∈ S2 if and only if r(Tj1) = 6r(Aj) for
j = 1, 2.

(b) All matrices in S2 is nonsingular if and only if 2r(T11) = s+r(T12)+8r(A1)
and 2r(T21) = t+ r(T22) + 8r(A2).

(c) There exists a matrix X ∈ S2 such that X > 0 (X < 0) if and only if
i−(T12) = 2r(A1) and i−(T22) = 2r(A2) (i+(T12) = 2r(A1) and i+(T22) =
2r(A2)).

(d) Any matrix X ∈ S2 satisfy X > 0 (X < 0) if and only if r(T11) = s +
i+(T12)+4r(A1) and r(T21) = t+i+(T22)+4r(A2) (r(T11) = t+i−(T12)+4r(A1)
and r(T21) = t+ i−(T22) + 4r(A2)).

(e) There exists a matrix X ∈ S2 such that X ≥ 0 (X ≤ 0) if and only if r(T11) =
i−(T12) + 4r(A1) or r(T21) = i−(T22) + 4r(A2) (r(T11) = i+(T12) + 4r(A1) or
r(T21) = i+(T22) + 4r(A2)).

(f) Any matrix X ∈ S2 satisfy X ≥ 0 (X ≤ 0) if and only if s+i+(T12) = 2r(A1)
or t+ i+(T22) = 2r(A2) (s+ i−(T12) = 2r(A1) or t+ i−(T22) = 2r(A2)).

Proof. . It follows from Lemma 4.1 and (4.1) that

r(X) = r(X1) + r(X2) and i±(X) = i±(X1) + i±(X2). (4.12)

Applying Theorem 3.1 to Xj as given in (4.6) gives the extremal ranks and
inertias of Hermitian LS solutions to matrix equation (4.4), then (4.12) implies
that (4.8)-(4.11) hold. And the conclusions (a)-(f) are obvious by applying
Lemma 2.1 to (4.8)-(4.11). �

It is noteworthy that the results expressed in Theorem 4.1 will be simplified
when adding the hypotheses AjB

∗
j = BjA

∗
j and AjA

+
j Bj = Bj for j = 1, 2, the

proofs of which are omitted.

Corollary 3. Suppose that AjB
∗
j = BjA

∗
j , j = 1, 2 in Theorem 4.1, then,

max
X∈S2

r(X) = s+ t− r(A1)− r(A2) + r(A∗
1B1) + r(A∗

2B2).

min
X∈S2

r(X) = 2r(A∗
1B1) + 2r(A∗

2B2)− r(A1B
∗
1)− r(A2B

∗
2).

max
X∈S2

i±(X) = s+ t− r(A1)− r(A2) + i±(A1B
∗
1) + i±(A2B

∗
2).
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min
X∈S2

i± (X) = r(A∗
1B1) + r(A∗

2B2)− i∓(A1B
∗
1)− i∓(A2B

∗
2).

Moreover,

(a) There exists a nonsingular matrix X ∈ S2 if and only if r(A1) = r(A∗
1B1)

and r(A2) = r(A∗
2B2).

(b) All matrices in S2 is nonsingular if and only if 2r(A∗
1B1) = s+r(A1B

∗
1) and

2r(A∗
2B2) = t+ r(A2B

∗
2).

(c) There exists a matrix X ∈ S2 such that X > 0 (X < 0) if and only if
i+(A1B

∗
1) = r(A1) and i+(A2B

∗
2) = r(A2) (i−(A1B

∗
1) = r(A1) and i−(A2B

∗
2) =

r(A2)).

(d) Any matrix X ∈ S2 satisfy X > 0 (X < 0) if and only if r(A∗
1B1) =

s + i−(A1B
∗
1) and r(A∗

2B2) = t + i−(A2B
∗
2) (r(A∗

1B1) = s + i+(A1B
∗
1) and

r(A∗
2B2) = t+ i+(A2B

∗
2)).

(e) There exists a matrix X ∈ S2 such that X ≥ 0 (X ≤ 0) if and only if
r(A∗

1B1) = s+ i+(A1B
∗
1) or r(A∗

2B2) = t+ i+(A2B
∗
2) (r(A

∗
1B1) = s+ i−(A1B

∗
1)

or r(A∗
2B2) = t+ i−(A2B

∗
2)).

(f) Any matrix X ∈ S2 satisfy X ≥ 0 (X ≤ 0) if and only if r(A1) = s +
i−(A1B

∗
1) or r(A2) = t + i−(A2B

∗
2) (r(A1) = s + i+(A1B

∗
1) or r(A2) = t +

i+(A2B
∗
2)).

Corollary 4. Assume that matrix equation (1.1) is consistent for Hermitian
R-symmetric X, i.e., AjB

∗
j = BjA

∗
j and AjA

+
j Bj = Bj for j = 1, 2, then,

max
AX=B,X∗=X,RXR=X

r(X) = s+ t− r(A1)− r(A2) + r(B1) + r(B2),

min
AX=B,X∗=X,RXR=X

r(X) = 2r(B1) + 2r(B2)− r(A1B
∗
1)− r(A2B

∗
2),

max
AX=B,X∗=X,RXR=X

i±(X) = s+ t− r(A1)− r(A2) + i±(A1B
∗
1) + i±(A2B

∗
2),

min
AX=B,X∗=X,RXR=X

i±(X) = r(B1) + r(B2)− i∓(A1B
∗
1)− i∓(A2B

∗
2).

To this end, we now investigate the extremal ranks and inertias of the Her-
mitian R-skew symmetric LS solutions to matrix equation (1.1). Define

S3 = {X | ∥AX −B∥ = min, X ∈ Cn
handRXR = −X}

Theorem 4.2. Suppose that the conditions are the same as in Theorem 4.1.

Let T31 =


0 A2A

∗
2A2 0 −A2

A∗
1B2A

∗
2 0 A∗

1A1A
∗
1 0

A∗
2A2A

∗
2 0 0 A∗

2A2

0 FA1B
∗
1A2 A∗

1 −Ω1T3Ω
∗
2

, then,
max
X∈S3

r(X) = 2min{s+ s1 − 2r(A1), t+ r(T31)− r(A1)− 3r(A2)}, (4.13)

min
X∈S3

r(X) = 2 [r(T31) + s1 − s2 − r(A1)− 2r(A2)], (4.14)
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max
X∈S3

i±(X) = min{s+ s1 − 2r(A1), t+ r(T31)− r(A1)− 3r(A2)}, (4.15)

min
X∈S3

i±(X) = r(T31) + s1 − s2 − r(A1)− 2r(A2), (4.16)

where s1 = r

[
A∗

1A1A
∗
1 A∗

1B2

A∗
1 Ω1T3Ω

∗
2

]
, and s2 = r

[
A∗

1A1A
∗
1 A∗

1B2A
∗
2

A1A
∗
1 A1Ω1T3Ω

∗
2A

∗
2

]
.

Proof. From (4.2), we know that

r(X) = 2r(X3)andi±(X) = r(X3). (4.17)

Thus it is enough to find the extremal ranks of X3 as given in (4.7).

In fact, applying Lemma 2.7 to X3, we get

max
H3∈Cs×t

r(X3) = min

{
r[−L FA1 ], r

[
−L
FA2

]}
(4.18)

min
H3∈Cs×t

r(X3) = r[−L FA1 ] + r

[
−L
FA2

]
− r(K). (4.19)

where K =

[
−L FA1

FA2 0

]
, L = X3 − Ω1T3Ω

∗
2.

Now we simplify the above items by the elementary block matrix operations.
Note that A+

1 A1Ω1T3Ω
∗
2 = Ω1T3Ω

∗
2 = Ω1T3Ω

∗
2A

+
2 A2, Lemma 2.2, (2.1) and (2.2)

in Lemma 2.5 follow that

r[−L FA1 ] = s− r(A1) + r[Ω1T3Ω
∗
2 −A+

1 B2] = s+ s1 − 2r(A1), (4.20)

and

r

[
−L
FA2

]
= t− r(A2) + r[A+

1 B2A
+
2 A2 + FA1(A

+
2 B1)

∗ − Ω1T3Ω
∗
2]

= r


A2 0 A2A

∗
2A2 0 0

0 A∗
1B2A

∗
2 0 A∗

1A1A
∗
1 0

It 0 0 0 It
0 A∗

2A2A
∗
2 0 0 A∗

2A2

0 0 FA1B
∗
1A2 A∗

1 −Ω1T3Ω
∗
2


− r(A1)− 3r(A2)

= t+ r(T31)− r(A1)− 3r(A2).

(4.21)

Moreover,

r(K) =r

 −L Is 0
It 0 A∗

2

0 A1 0

− r(A1)− r(A2)

=s+ t+ r(A1Ω1T3Ω
∗
2A

∗
2 −A1A

+
1 B2A

∗
2)− r(A1)− r(A2)

=s+ t+ s2 − 2r(A1)− r(A2).

(4.22)

Therefore, substituting (4.20)-(4.22) into (4.18) and (4.19) and combining with
(4.17) deduce that (4.13)-(4.16) hold. �
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From Lemma 4.2, A1B
∗
1 = B2A

∗
2 implies that T3 = 0, in this case, the r(T31)

in Theorem 4.2 can be written as

r(T31) = r

 A∗
1A1B

∗
1 0 0

A∗
2A2A

∗
2 (A∗

2A2)
2 0

0 B∗
1A2 A∗

1

+ r(A2)
.
= r(T ′

31) + r(A2), (4.23)

and
s1 = r(A1) + r(A∗

1B2) and s2 = r(A1) + r(A∗
1A1B

∗
1).

Then we have the following result:

Corollary 5. Suppose that A1B
∗
1 = B2A

∗
2 in Theorem 4.2 and T ′

31 as in (4.23),
then,

max
X∈S3

r(X) = 2min{s+ r(A∗
1B2)− r(A1), t+ r(T ′

31)− r(A1)− 2r(A2)},

min
X∈S3

r(X) = 2 [r(T ′
31) + r(A∗

1B2)− r(A∗
1A1B

∗
1)− r(A1)− r(A2)],

max
X∈S3

i±(X) = min{s+ r(A∗
1B2)− r(A1), t+ r(T ′

31)− r(A1)− 2r(A2)},

min
X∈S3

i±(X) = r(T ′
31) + r(A∗

1B2)− r(A∗
1A1B

∗
1)− r(A1)− r(A2).

Since the consistency of matrix equation (1.1) under Hermitian R-skew sym-
metric constraint is coincided with that of matrix equations (4.5), if matrix
equations (4.5) are consistent, that is, A1A

+
1 B2 = B2, A2A

+
2 B1 = B1 and

A1B
∗
1 = B2A

∗
2, then we have r(A∗

1B2) = r(B2) and r(A∗
2B1) = r(B1). Hence we

can also obtain similar conclusion as in Corollary 2.

Remark 4.1. Similar to the statements in remark 3.1, the extremal ranks and
inertias of the Hermitian R-symmetric and R-skew symmetric LS solutions to
matrix equations AX = B,XC = D can also be derived by Theorems 4.1 and
4.2, respectively.
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