• Title/Summary/Keyword: polygonal function

Search Result 37, Processing Time 0.034 seconds

The elastoplastic formulation of polygonal element method based on triangular finite meshes

  • Cai, Yong-Chang;Zhu, He-Hua;Guo, Sheng-Yong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.119-129
    • /
    • 2008
  • A small strain and elastoplastic formulation of Polygonal Element Method (PEM) is developed for efficient analysis of elastoplastic solids. In this work, the polygonal elements are constructed based on traditional triangular finite meshes. The construction method of polygonal mesh can directly utilize the sophisticated triangularization algorithm and reduce the difficulty in generating polygonal elements. The Wachspress rational finite element basis function is used to construct the approximations of polygonal elements. The incremental variational form and a von Mises type model are used for non-linear elastoplastic analysis. Several small strain elastoplastic numerical examples are presented to verify the advantages and the accuracy of the numerical formulation.

An Efficient Polygonal Surface Reconstruction (효율적인 폴리곤 곡면 재건 알고리즘)

  • Park, Sangkun
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2020
  • We describe a efficient surface reconstruction method that reconstructs a 3D manifold polygonal mesh approximately passing through a set of 3D oriented points. Our algorithm includes 3D convex hull, octree data structure, signed distance function (SDF), and marching cubes. The 3D convex hull provides us with a fast computation of SDF, octree structure allows us to compute a minimal distance for SDF, and marching cubes lead to iso-surface generation with SDF. Our approach gives us flexibility in the choice of the resolution of the reconstructed surface, and it also enables to use on low-level PCs with minimal peak memory usage. Experimenting with publicly available scan data shows that we can reconstruct a polygonal mesh from point cloud of sizes varying from 10,000 ~ 1,000,000 in about 1~60 seconds.

Free Vibration Analysis of Arbitrarily Shaped Plates with Free Edges Using Non-dimensional Dynamic Influence Functions: the case that straight and curved boundaries are mixed (무차원 동영향 함수를 이용한 자유단 경계를 가진 임의 형상 평판의 진동해석 : 직선 및 곡선 경계가 혼합된 경우)

  • Choi, Jang-Hoon;Kang, Sang-Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.534-537
    • /
    • 2005
  • Free Vibration Analysis using Non-dimensional Dynamic Influence Function (NDIF) is extended to arbitrarily shaped plates including polygonal plates. Since the corners of polygonal plates have indefinite normal directions and additional boundary conditions related to a twisting moment at a corner along with moment and shear force zero conditions, it is not easy to apply the NDIF method to polygonal plates wi th the free boundary condition. Moreover, owing to the fact that the local polar coordinate system, which has been introduced for free plates with smoothly varying edges, cannot be employed for the straight edges of the polygonal plates, a new coordinate system is required for the polygonal plates. These problems are solved by developing the new method of modifying a corner into a circular arc and setting the normal direction at the corner to an average value of normal direct ions of two edges adjacent to the corner. Some case studies for plates with various shapes show that the proposed method gives credible natural frequencies and mode shapes for various polygons that agree well with those by an exact method or FEM (ANSYS).

  • PDF

NUMBER OF VERTICES FOR POLYGONAL FUNCTIONS UNDER ITERATION

  • Li, Lin
    • The Pure and Applied Mathematics
    • /
    • v.14 no.2 s.36
    • /
    • pp.99-109
    • /
    • 2007
  • Being complicated in computation, iteration of a nonlinear 1-dimensional mapping makes many interesting problems, one of which is about the change of the number of vertices under iteration. In this paper we investigate iteration of polygonal functions which each have only one vertex and give conditions under which the number of vertices either does not increase or has a bound under iteration.

  • PDF

Probabilistic localization of the service robot by mapmatching algorithm

  • Lee, Dong-Heui;Woojin Chung;Kim, Munsang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.92.3-92
    • /
    • 2002
  • A lot of localization algorithms have been developed in order to achieve autonomous navigation. However, most of localization algorithms are restricted to certain conditions. In this paper, Monte Carlo localization scheme with a map-matching algorithm is suggested as a robust localization method for the Public Service Robot to accomplish its tasks autonomously. Monte Carlo localization can be applied to local, global and kidnapping localization problems. A range image based measure function and a geometric pattern matching measure function are applied for map matching algorithm. This map matching method can be applied to both polygonal environments and un-polygonal environments and achieves...

  • PDF

Free Vibration Analysis of Arbitrarily Shaped Polygonal Plates with Free Edges by Considering the Phenomenon of Stress Concentration at Corners (꼭지점에서의 응력 집중 현상을 고려한 자유단 경계조건을 가진 임의 다각형 형상 평판의 자유 진동 해석)

  • Kang, Sang-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.220-225
    • /
    • 2007
  • Free vibration analysis using the method of NDIF (non-dimensional dynamic influence function), which was developed by the author, is extended to arbitrarily shaped polygonal plates with free edges. Local Cartesian coordinate systems are employed to apply the free boundary condition to nodes distributed along the edges of the plate of interest. Furthermore, a new way for applying the free boundary condition to nodes located at corners of the plate is for the first time introduced by considering the phenomenon of stress concentration at the corners. Two case studies show that the proposed method is valid and accurate when the eigenvalues by the proposed method are compared to those by FEM(ANSYS).

REVIEW AND IMPLEMENTATION OF STAGGERED DG METHODS ON POLYGONAL MESHES

  • KIM, DOHYUN;ZHAO, LINA;PARK, EUN-JAE
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.66-81
    • /
    • 2021
  • In this paper, we review the lowest order staggered discontinuous Galerkin methods on polygonal meshes in 2D. The proposed method offers many desirable features including easy implementation, geometrical flexibility, robustness with respect to mesh distortion and low degrees of freedom. Discrete function spaces for locally H1 and H(div) spaces are considered. We introduce special properties of a sub-mesh from a given star-shaped polygonal mesh which can be utilized in the construction of discrete spaces and implementation of the staggered discontinuous Galerkin method. For demonstration purposes, we consider the lowest case for the Poisson equation. We emphasize its efficient computational implementation using only geometrical properties of the underlying mesh.

Three-Dimensional Vibration Analysis of Solid Cylinders of N-Sided Polygonal Cross-Section Having V-notches or Sharp Cracks (V노치 및 예리한 균열을 갖는 N 다변형 단면 입체 실린더의 3차원 진동해석)

  • Kim, Joo Woo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.433-442
    • /
    • 2009
  • In this paper, new three-dimensional vibration data for the solid cylinders of the N-sided polygonal cross-section with V-notches or sharp cracks are presented, and a Ritz procedure is employed, which incorporates a mathematically complete set of algebraic-trigonometric polynomials in conjunction with an admissible set of edge functions that explicitly model the tri-axial stress singularities that exist along a terminus edge of the V-notch. Convergence studies demonstrate the necessity of adding the edge functions to achieve the accurate frequencies and mode shapes of N-sided polygonal cylindrical solids with stress singularities.

Creation of Fractal Images with Rotational Symmetry Based on Julia Set (Julia Set을 이용한 회전 대칭 프랙탈 이미지 생성)

  • Han, Yeong-Deok
    • Journal of Korea Game Society
    • /
    • v.14 no.6
    • /
    • pp.109-118
    • /
    • 2014
  • We studied the creation of fractal images with polygonal rotation symmetry. As in Loocke's method[13] we start with IFS of affine functions that create polygonal fractals and extends the IFS by adding functions that create Julia sets instead of adding square root functions. The resulting images are rotationally symmetric and Julia set shaped. Also we can improve fractal images by modifying probabilistic IFS algorithm, and we suggest a method of deforming Julia set by changing exponent value.

The Analysis of Electromagnetic Scattering of Perfectly Conducting Polygonal Cylinders Using Extrapolation Integral Method (외삽 근사법을 이용한 완전 도체 다각주의 전자파 산란 해석)

  • 이상회;정구철;김정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.6
    • /
    • pp.571-579
    • /
    • 1987
  • The integral equations used in electromagnetic fields theory can be used for scattering problems. We can obtain various characteristics of scatterer. Ie, power pattern, scattered field, by finding current distribution on the scatterer. In this paper, current distribution on polygonal cylinder is obtained using integral equations in 2 dimension. For numerical aualysis, the moment method is used with pulse function as a basis function and integral equation is used with extrapolation method, which saves cpu time.

  • PDF