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NUMBER OF VERTICES FOR POLYGONAL FUNCTIONS
UNDER ITERATION

Lin L1

ABSTRACT. Being complicated in computation, iteration of a nonlinear 1-dimensi-
onal mapping makes many interesting problems, one of which is about the change
of the number of vertices under iteration. In this paper we investigate iteration
of polygonal functions which each have only one vertex and give conditions under
which the number of vertices either does not increase or has a bound under iteration.

1. INTRODUCTION

Iteration is repetition of the same operation. In mathematical sense, for a fixed

integer n > 1, the n-th iterate of a mapping f : E — E, where F is a nonempty set,
is defined by

ff=fof* ff=id
inductively, where o denotes the composition of mappings and id denotes the identity
mapping. If f is a bijection, i.e., one-to-one and onto, then the index n of iteration
can be extended to the whole set Z of integers.

Iteration is often observed in mathematics, science, engineering and daily life, but
its calculation is complicated even in the one-dimensional case {12, 14]. Although
conjugacy between mappings, i.e., f ~ ¢ if and only if f = A~ 0 go h for a certain
bijection h : F — E, may reduce many functions to those whose general iteration
can be given easily, only a few classes of functions can be calculated for their general
iteration even if a computer is used [12, 14].

General iteration of mappings often gives useful ideas and methods for the study
of iterative roots [5, 10], in particular, of some special classes of functions. It is
considered for polynomials and formal power series in (7, 8, 9]. Properties of general

iteration are investigated for strictly piecewise monotone functions (abbreviated by
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PM functions) in [2, 11, 13]. It is shown in [13] that the number N(f") of non-
monotone points of the n-th iterate of a PM function f is nondecreasing.

Polygonal function is an elementary class of one-dimensional maps and recently
increasing interests were made to it in various fields {1, 3, 6]. A polygonal function
f:I=/a,b] — I is a continuous piecewise linear function, which is of the general
form

(1.1) ft)= [i(t) ==kt + G, as aj <t <ajel,

where (a;) is a strictly increasing sequence in I and k; # kj41 for each j. By
continuity we see for each j that k;_i1a; + 81 = kja; + 8}, ie.,

(1.2) (KZj - nj_l)aj + (,3]' - ,Bj._l) =(, Vj.
Here all a;’s are vertices of this polygonal function and we let V(f) consist of all a;’s,
which can be either a finite set or an infinite set. For simplicity, we also refer to a
polygonal function f with V(f) = n as a n-polygonal function. Although polygonal
function is of an elementary form, computing its iterates is not easy because the
concerned different lines on distinct intervals may interact each other in iteration.
To our best knowledge, only the second order iterate of polygonal functions was
investigated in [4].

In this paper we discuss iteration of 1-polygonal functions on an interval. More
concretely, we consider functions f : I = [a,b] — I of the form

_J Alt) =rit+ B, as a <t <t
(1.3) )= { fa(t) == Kat + B, as tg <t <b,
where k1 # ko . From (1.2) we know that the vertex is (tg, zg), where
-8
zo = kKito+ 51, to = _ﬁ_?_,_l‘
. K2 —Ki

We find conditions of k; and 2 under which the number of vertices either does not
increase or has a bound under iteraticn. As observed in what follows, our results
highly depend on the position of the vertex (tg,zg) to the diagonal line z =t (i.c.,
either ty < zg, or tg = zy, or ty > xzg) in the (¢, z)-coordinate plane.

2. CASE: K1 >0,k <0

Proposition 1. Let f be the polygonal function of (1.8), where ky > 0,89 < 0. If
zo < to (Fig. 1) then the number of vertices under iteration does not increase, i.e.,
V(f*) =1 for alln € N, and the vertex of f™ locates at (to, k7to + 51(1 — k7)/(1 —
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k1)). In addition, f™(t) — 61/(1 — k1) asn — oo for each t € I when 0 < k; < 1.
If zo > ty then V(f") =1 for all n € N when fi(a) > to, fo(b) > to (Fig. 2);
otherwise, V(f™) > 2 for all integers n > 2 (Fig. 3).
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a to a to b a
Fig.l: z¢ < tg. Fig.2: o > tg and Fig.3: ¢ > to and
fi(a) > to, fa(b) > to f1(a) < to, f2(b) > to

Proof. First of all, in the case of zg < tg, we note that
(2.4) a < f(t) <to, Vt € [a,b],

because f; is increasing and f, is decreasing, which implies that zg = f(ty) is the
maximum of f. Thus, f(f(t)) = fi(f(t)) and the iterate of f can be presented as

n 1~ "1
fn(t): fl (t)'—:li?t'*‘ﬁl(l_’:l)a - as aStStO,
7UR@) = /1 kot + K7 B+ B (T5E—),  as tog<t<b,

It implies that V(f") = 1 for all n € N because the left derivative D f™(ty — 0) = 7}
and the right derivative D f™(ty+0) = n?_lng are different. In addition, if 0 < x; < 1
then f™(t) — 81/(1 — k1) as n — o0, because k7 — 0 as n — 0.

We discuss the case that 29 > tg in the following 4 subcases: (i) fi(a) > o, fo(b) >
to; (ii) fi(a) > to, fa(b) < to; (iii) fi(a) < to, fa(b) > to; and (iv) fi(a) < to, f2(b) <
to-

In the subcase (i), as in (2.4), we have tg < f(t) < b for all ¢ € [a,b]. Thus,
f(f®) = fo(f(t)) and

() = { BHAO) = 5 b+ 157 +%(EED),  as a<t<t,
f2(t) = k5t + 8 (1=2), as tp<t<b,
which implies that V(f") =1 for all n € N.

In the subcase (ii), the continuity of f, guarantees the existence of 5 € (to,b)

such that
(25) fa(t3) =to
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because fa(b) < to and fa(to) > to. Thus t5 = f5(to) and
R(Ai®),  as a<t<t,
P =4 £, as to <t <t
Nilf2(t),  as t3<t<b
It follows that Df2(ty — 0) = koky # K3 = Df>%(tg + 0), and Df(t5 — 0) = &3 #
Koky = D fz(tg + 0), implying that V(f?) = 2. Moreover, to and t3 are both non-
monotone points of f2 as defined in [13] and stated in section 9. By Lemma 2.2 in [13]
and its proof, a non-monotone point of a PM function f is also a non-monotone point
of f™ and therefore the number N(f™) of non-monotone points is nondecreasing in
n. On the other hand, for polygonal functions each non-monotone point is a vertex
(but the converse is not true). Thus V(f") > N(f"), implying that V(f") > 2 for
all integers n > 2.
The subcase (iii) is similar to the subcase (ii). As in (2.5),

(2.6) H(&) =to

for some t} € (a,tp). Thus t§ = f7'(ty) and f2 has two non-monotone points t* and
to, implying that V(f") > 2 for all integers n > 2.

The subcase (iv) is a combination of (ii) and (iii), where f2 has three non-
monotone points t3,%g,t3. We similarly see that V/(f™) > 3 for all integers n > 2
and the proof is completed. O

3. CASE: k1 >0, ko >0

In this section we will see that the growth of the number V(f™) depends on the
relation between fl(a) (or f3(b)) and ty. For a simple statement, an increasing
(resp. decreasing) sequence (c,) in [a,b] is said to cross tg € (a,b) in m-th order
if ¢; < to (resp. ¢; > tp) and m > 2 is the least integer such that ¢; < to (resp.

c; >tg) foralli=1,2,---m—~1and ¢, > to (resp. ¢y < tp).

Proposition 2. Let f be the polygonal function of (1.8), where k1 > 0, k2 > 0.

() If zo = to (Fig.4) then the number of vertices does not increase, i.e.,
V(f*)=1 foralln € N.

(i) If zo < tp then either V(f™) == 1 for all n € N when f2(b) < to (Fig.5) or
V(f) =i foralli=1,2,...,m — 1 and V(f™) = m for all n > m when the
sequence (f3(b)) crosses ty in m-th order.
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(iii) If zo > to then either V(f™) =1 for all n € N when fi(a) > to (Fig.6) or
V(fy=1iforalli=1,2,...,m —1 and V(f*) = m for all n > m when the
sequence (fl'(a)) crosses tg in m-th order.

/
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a to o a to
Fig. 4: zg =tp Fig.5: zp < o, f2(b) < to Fig.6: xp > to, f1{a) > to

Proof. In the case of zg = 1y, since f; is increasing we see that
(3.7) a < fi(t) < to, Vi € [a,tg),
Similar to (3.7), we also have tg < fo(t) < b for all ¢ € [t,d]. It follows that

f’n,(t) — f{l(t)a as a<t< th
fg(t) as t0<téb)
implying that V(f") =1 as k1 # kg for all n € N.
In the case of 2o < 1, as in (3.7), we also have a < fi(t) < to for all ¢ € [a, o).
Moreover, for ¢ € (o, b] we have a < fa(t) < tg if fo(b) < to. Thus

1—-K7
fn(t) _ fin(t) = K'?t + ﬂl(i?:?{)) - as a <t <t
PTHS2(0) = K kot + KT B + BL(FTEL—),  as o<t <D,

implying that V(f™) = 1 for all n € N since k] # k]~ x,.
Suppose that zo < tg and fi(b) > tg foralli =1,2,---m— 1 but fb) < tp. We
first prove that

(3.8) V(f)=i foralli=1,..,m—1,

Use the notations = fy (to), j =0,..,m — 1. Since f1, fo are both increasing,
we see that tp < t’]*-_1 < t;*- < b. We claim that

ONS as t € [a, g},

(39)  fHt) = { AP,  as te(t, &l i=1.,k-1,
@), as t & (t_1,0],
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for k = 2,3,...,m. Obviously,

Fi(t), as a <t <t
(@) { f1(fa(t)), as to <t < f3l(to),
13(t), as fyl(to) <t<b,

implying that V(f2?) = 2. For an inductive proof, assume that (3.9) holds for an
integer k € {2,...,m—1}. In this case, fi([a,t0]) C [a,t0]. Thus f¥+1(t) = f(f¥(t)) =
(1) for t € [a,to) and

(310)  FFE) = FUTTIA®)) = HTT(A®), ast e (5,8,

for j = 1,...,k — 1. Moreover, f¥(b) > t5, that is, = fz—k(to) € (t;_1,b). Thus for
L€ (1, t}] we have fE41(t) = F(FE(1)) = fu(fE (1)) because £A(t) € (zo,to] C [a, o]
and, on the other hand, for t € (¢},b] we have f§(t) € (ta, f¥(b)] C (0, b], implying
that f*¥1(t) = F(fE(t)) = fF*1(t). This proves that (3.9) holds for k + 1. Since
K1 # kg we can see that the left derivative is different from the right derivative at
each junction, i.e., (3.9) implies that V(f*) = k and (3.8) is proved by induction.

Furthermore, using (3.9) for k = m, we have that f™*1(t) = f"*(¢) for t €
[a,t0], f™H(E) = I (f(8) for t € (£5_1,83), where j = 1,..,m — 1. Note
that fi*(b) < to, that is, t7,_, < b < t;*n = fy ™(to). Thus for ¢t € (t},_,,b]
we have fI*(t) € (xo,to] and therefore f™+1(t) = f(f*(t)) = fi(fit)). This
implies that V(f™*!) = m. In comparison with f* for & < m — 1 we observe
that iteration makes a new vertex in the last sub-interval (t;_,,b], but none of
new vertex arises there when k > m. Actually, for any natural number n we can
calculate fm"‘"(t) = fI"(t) on [a, to], fH(E) = FTTI(FL(t)) on (t;_y,t;], where
Jj=1,..,m~1, and for t € (;,_,,b] we have

frn(e) = ) = LU ).

Therefore, V(f™*t™) = m for all natural numbers n.
The proof of result (iii) is similar to that of (ii). 0

In Proposition 2 we show that V(f™) is bounded for some classes of f. In other
cases, i.c., f3(b) > to or fi(a) < to holds for all natural numbers i, the proof of
Proposition 2 implies that (3.9) holds for all K € N. Thus V(f!) =i forall i € N

and V(f™) — 0o as n — oo.
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4. CASE: K1 <0, ko >0

Proposition 3. Let f be the polygonal function of (1.3), where k1 < 0,k2 > 0. If
xo > to (Fig. 7) then the number of vertices does not increase under iteration, i.e.,
V(f*) =1 for all n € N, and the vertez of f™ locates at (to, k5to + B2(1 — k5)/(1 —
k2)). In addition, f™(t) — B2/(1 — k2) as n — oo for each t € I when 0 < kg < 1.
If xo < to then V(f™) =1 for all n € N when fi(a) < to, f2(b) < to (Fig. 8);
otherwise, V(f™) > 2 for all integers n > 2 (Fig. 9).
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J/ ol A 7

| l I
a to a to 0 a to
Fig.7: zg > to Fig.8: zo < tg and Fig.9: zp < tp and
fi(a) < to, fa(b) < to fi{a) > to, f2(b) > to

Proof. First of all, in the case of zg > tg, we note that
(4.11) to < f(t) < b, Vi€ [a,b],

because f1 is decreasing and f5 is increasing. Thus f(f(¢)) = f2(f(t)) and the iterate
of f can be presented as

0 = { F5HA0) = 5 et + 57314 S(EED),  as a<t<t,
13@) = K5t + B2 (152), as to<t<b,
implying that V(f*) = 1 for all n € N because D f™(to — 0) = k3" 'k; and D f™(to+
0) = k% are different. In addition, if 0 < k3 < 1 then f*(t) — 32/(1 - k2) as
n — 0o, because k§ — 0 as n — oo.
We omit the proof in the case of xg < tp, which is similar to that of Proposition
1 and given separately in the following four subcases: (i) f1(a) < to, f2(b) < to; (ii)
fi(a) < to, f2(b) > to; (iii) fi(a) > to, fo(b) < to; and (iv) fi(a) > to, f2(b) > to. O
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5. CASE: k1 <0,k <0

Proposition 4. Let f be the polygonal function of (1.8), where k1 < 0,k < 0.
Then
i) V(f¥™) =0 and V(f>™*t1) =1 for allm € N if g = to (Fig. 10).
(i) Ifzo < to then V(f™) =1 for alln € N when fi(a) < to(Fig. 11); otherwise,
V(™) > 2 for all integers n > 2.
(iii) Ifzo > to then V(f™) =1 for alln € N when fo(b) > to(Fig. 12); otherwise,
V(f™) > 2 for all integers n > 2.

/ /
/ / /
/ / Tof— — /
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xo_¥/\ —__T/ ___7|r4___
/ : ””O—\f%'\ / {
a to a to b @ to
Fig.10: zo = to Fig.11: zy < to, f1(a) < tp Fig.12: 2o > to,fg(b) >t

Proof. In the case of g = %y, since f; is decreasing, we have ty < fi(t) < b for all
t € [a,tp). Similarly, we also know that a < fo(t) < tp for all ¢ € [to,b]. Thus
£2(8) = f2(f1(t), as a<t<ty,
fi(f2(t)), as to<t<b,
f3(t) — f1(f2(f1(t))), as a <t <o,
L(fi(f2(t)), as to<t<b.

One can inductively prove that for all m € N
f2m(t) — { (f?fl)m(t)a as a <t <,
(frf2)™3), as tp <t<b,
£+ () = { A((RA)(@),  as a<t<t,
HLfif)™(), as to<t<h
Since Df?™(tg — 0) = kKT&T = Df?™(ty + 0), we see that ¢ is no longer a vertex
of 2™ and therefore V(f?™) = 0. Similarly, V(f?™*!) = 1 for all m € N because
Df*m+(to — 0) = K"K # TRTH = D™+ (2o + 0).
The case (iil) can be discussed by the same arguments as in the case (ii). We
discuss the case (ii), i.e., Zg < to, separately in the subcases: (ii-a) fi(a) < to and
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(ii-b) f1(a) > to. In the subcase (ii-a), since f is decreasing, we have

ey ) ST (), as a <t<tg,
™0 = { fi “fa(t)), as tg <t <b,

implying that V(f") =1 for all n € N since k7 # K?—l Ka.
In the subcase (ii-b), the iterate f2 is presented as

fa(f1(2)), as a <t < filto),
(5.12) ) =4 ), as fi(to) <t <o,
fi(f2(t)), as to<t<b.
If k1 = —1 we have
(5.13) F2(to) = fA(to) = K20 + B1(1+ K1) = to,

but f(tp) = zo < to , implying that ¢y is 2-periodic point of f. Moreover, for each
m € N, a < ff™(t) < fIm(to) = to and a < f™H(t) < fE™H(f7(to)) = to for all
t € (f71(to), to] since f; is decreasing. It follows that

(5.14) FH(8) = 1) Yt € (f (to), tol,

implying that the left derivative Df"(to — 0) = Df(to — 0) = «. However, in
general, for a given ¢t € I there exists an integer j = 0,...,n such that Df™(t) =
n’f_j ng. From (5.12) we see that the right derivative Df"(to + 0) has at least a
factor k2, i.e., j > 1. It implies that Df™(ty — 0) # Df™(to + 0). Similarly, we have
Df™(f7 (ko) — 0) # Df™(f{(to) +0). Thus, f™ has at least two vertices at tp and
fT (to), and therefore V(f™) > 2 for all integers n > 2.

If k1 < —1, from (5.13), we have

1— k2 1-—«2
f%w=ﬁm+m( 1>>ﬁm+( L
1—/(,1 1—:‘€1

because fi(to) < to, i.e., f1 < (1 — k1)to. It follows that
< P (t0) < AP Hb0) < .. < 3 (to) < f(to) < to
< fAto) < fH{to) < -.. < FPM(t0) < fP™2tg) < ...

since f2 is increasing. Thus from (5.12) we see that f3(t) = f3@) for all t €
(f7 X (to), f %(to)]. One can inductively prove that

(5.15) 2y = ) vt e (F7 O™ D), 78D )],
(5.16) FImre) = FEe) Ve € (F7™ D (to), £ (ko)

for all m € N. Hence for even n = 2m, similarly to the discussion after (5.14),
we can show that the left derivative and the right one of f* at f; (2m“1)(t0) are

)(1 — Kk1)to = to
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different. So are the derivatives of f™ at f; @m=2) (to). It follows that V(f™) > 2 for
all even n > 2. For the same reason, V(f") > 2 for all odd n > 3.

If -1 < k1 <0 then f2(tg) < K2tp + ((1 — k3)/(1 — k1))(1 — k1 )to = to. It follows
that f(tp) < fs(to) <...< f2m+1(tc.) < f2m+3(t0) <...and ... < f2m(t0) <
™ 2(t) < ... < f(to) < to and therefore f™(ty) < to for all n € N since f2 is
increasing. Thus from (5.12)

() = () Yt € (7 (t0), to]
As discussed above, f;"}(ts) and to are both vertices of 7, implying that V(f") > 2
for all integers n > 2. The proof is completed. d

Using the same proof, we can also consider the case that x; = 0 or x, = 0 and give
the similar conclusions. Not mentioning the computation of general iteration, the
law on the change of vertices under iteration is much more complicated if a polygonal
function has more than one vertices. For a general polygonal function we want to
know: Is the number of vertices not increasing or bounded under iteration? More
concretely, what m-polygonal function f satisfies that V(f™) < m or V(f*) < o0
for all integers n > 2. This is a direction of our further efforts.
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