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Three-Dimensional Vibration Analysis of Solid Cylinders of N-Sided Polygonal
Cross-Section Having V-notches or Sharp Cracks
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ABSTRACT : In this paper, new three-dimensional vibration data for the solid cylinders of the N-sided polygonal cross—section with
V-notches or sharp cracks are presented, and a Ritz procedure is employed. which incorporates a mathematically complete set of
algebraic-trigonometric polynomials in conjunction with an admissible set, of edge functions that explicitly model the tri-axial stress
singularities that exist along a terminus edge of the V-notch. Convergence studies demonstrate the necessity of adding the edge functions to

achieve the accurate frequencies and mode shapes of N-sided polygonal cylindrical solids with stress singularities.
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KEYWORDS : Ritz method. Polygonal cylindrical solid, Three-dimensional elasticity theory, Free vibration, Three-dimensional
stress singularities, Edge function. Natural frequency

1. INTRODUCTION

Solid cylinders  of polygonal cross-section can be
commonly seen in civil, aerospace and ocean engineering
systems. The computational difficulties in three-
dimensional modeling of polygonal cylinders have led to
the development of simple refined beam theories
(Timoshenko, 1921a: Timoshenko, 1921b). The three-
dimensional analyses place none of the kinematic
constraints of the one- or two-dimensional theories.
Usually, effective solutions to the three-dimensional
dynamic problems of elastic bodies are very difficult to
obtain. Therefore, despite the practical needs for
three-dimensional vibration solutions to this engineering
problems, very little has been done in the associated

literature of cylindrical elastic solids. Specifically no
previously published data is known to exist for solid
cylinders of polygonal cross-section with V-notches or sharp
cracks. Understanding the vibration characteristics require
three-dimensional prediction procedure, which is based upon
three-dimensional theory of elasticity. A three- dimensional
analysis places none of the kinematic constraints of the
twodimensional theories.

One effort was performed by Kim, et al. (2001), who
presented the vibration data of three-dimensional
parallelepipeds by considering the stress singularities
using the Ritz procedure. Recently, the natural
frequencies of V-notched or cracked hexagonal plates are
offered using classically thin plate theory(Kim. et al..
2006) and Mindlin plate theory (Kim and Jung. 2007).
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Using the Ritz method the free vibration data of complete
solid cylinders with polygonal cross—sections are reported
by Liew, et al. (1997).

The present work examines the solid cylinders of
N-sided polygonal cross-section having V-notches and
sharp radial cracks. for which no previously published
vibration frequencies is known to exist. The relative
depth of the V-notch is defined as 1-¢/e and the notch
angle is defined as 360" —a (Fig. 1). For a very small
notch angle (one degree or less), the notch may be
regarded as a radial crack.

In this study a singefield Ritz procedwe is employed.
which incorporates a complete set of admissible
algebraic-trigonometric polynomials in conjunction with an
admissible set of edge functions that explicitly model the
three-dimensional stress singularities which exist along a
reentrant vertex (i.e.. o >180") of the V-notch. The first
set of polynomials guarantees convergence to exact
frequencies as sufficient terms are retained. The second set
of edge functions substantially accelerates the convergence of
frequencies, which is demonstrated through extensive
convergence studies herein. Accurate (five significant figure)
frequencies are presented for N-sided polygonal cylindrical
solids having various notch angles.
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N Venotch terminus edge
Fig 1. An elastic solid cylinder of N-sided polygonal
cross-section with a V-notch
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2. METHOD OF ANALYSIS

Consider in Fig. 1 a completely free, isotropic elastic
solid polygonal cylinder with height of h and cylindrical
coordinates (r.8,z) originating at the terminus of the
V-notch on middle surface. The location of the
V-notch terminus is defined by the horizontal
distance c. For the three-dimensional Ritz approach,
the vibratory displacement functions are assumed as

u,(r.0,2,0)=U,(r.8,2)siner, (1a)
vo(r.0,2,0) =¥y(r,0,2)sinwr, (1b)
w.(r,0,z,0)=W,(r,0,z)sinot, (1¢)

where the U, and V, are in-plane displacement
amplitudes in r and @ directions, respectively and
W. is transverse displacement amplitude. and w
and t denote the circular frequency of vibration and
time. respectively.

The maximum strain energy during a vibratory cycle is
represented by

aU an» 2
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In Eq. (2), Kand G are the Lamé constants

vE E

= a+v(1—-2v)" G= 201—-21) "

where £ is Young's modulus, and » is Poisson’s ratio.
The maximum kinetic energy is

2
Tex = %jﬂ(b}z+ Vi+ l-i"_.z)r' drdf dz, (3)



in which p is the mass per unit volume. In Egs. (2)
and (3), the limit of integrations is defined as »(6).
describing the hexagonal circumferential boundary:

Iyll - wll tanqll I
sinf — tan,cosf

(-w<0<a), (4a)

r(0)=

where number of sides n=1,2,-,/V (for hexagon,
N = 6 as shown in Fig. 1). The above equation can
be applied to all range of # for hexagon except
following cases:

=

r(0)=— cmg (9% Sgig%*l)‘ (4b)
r(f) = 2¢ By <6<9,). (4¢)
cosl
In the Eq. (4a),
T
{’“ =hty (4d)
M = -1 +»6
r, =atc
{-l‘” =, - 1 + Lcos T -1 {46]
8 d
{”‘ 2 . (4f)
yn — yl‘l =1 + Lﬁin'f]“ =1
in which n=1.2.--,V and
g= % . L= 20tau:§ 1 (4g)

The required area integral in the dynamical energy
Egs. (2) and (3) can be performed numerically.

In the present three-dimensional Ritz analysis,
displacement trial functions are assumed as the sum
of two finite sets

U =UrU, V,=

Va+ Vyo W.= W'+ We, (5)

where UF, VJ, and W?” are the admissible and
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mathematically complete set of  algebraic-

trigonometric polynomials and Uy . Vy ., and W]
are admissible edge functions, which account for
singular stress behavior along the terminus edge of
the V-notch (see Fig. 1). The chosen algebraic-
trigonometric polynomial functions are written as

II I "‘1
Ulr.6.z)= Y, Y, EA,_,;!' 'cos jo ¥
= 2.4j=0.2.4k =
"'. 1 ;'.' .
+ E 3 A’ 'eos j6", (6a)
= L3.5j= 1.3.5k=0
I i Ky )
Vi(r.0,z)= E E ,_,‘r"—'sinjﬂzk
=2.4j=0.2.4k =
I, i K,
+ B~ 'sinjz", (6b)
i=1.3.5j= 1.4.5k=0

A i K,
Wir,6.2)= Y, E Cjr'cos joz*
1= 2.45=0.2.4k =
A i L _
+ E b3 C,jyr'cos joz* (6c)
=35 = La.5k=10

for the symmetric vibration modes when d =0 in Fig.
1. In Egs. (6). A, —C, are undetermined
coefficients. and the values of i are specially chosen to
avoid unacceptable stress singularities at »= 0 and yet
preserve the mathematical completeness of the
resulting series. Hence convergence to the exact
frequency solutions is guaranteed as sufficient solution
sizes of this series are retained in the present Ritz
procedure.

The displacement polynomial functions in Egs. (5) and
(6) should theoretically yield accurate frequencies even for
the polygons having stress singularities. However, when a
large size of polynomials is utilized. numerical
ill-conditioning becomes an obstacle and prohibits one from
achieving accurate solutions. This problem is alleviated by
augmentation of the displacement polynomial trial set with
admissible edge functions, which introduce the proper
three-dimensional singular vibratory stresses along the
terminus edge of a V-notch or sharp radial crack.

The set of edge function is taken as
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M, N,
U; = E E Gmnr‘\ml - Tlm‘r}mc()ﬁ (’\m + 1)9

m=lIn=10

+cos (A, — 6)] s" (7a)

M, N,
VE = E E Gﬂmr'\m[_ Ty nmsin(}‘m + 1)0
m=1ln=10 "
= (psin(A,, — l)ﬁ]z", (Tb)

M, N, = =1
Wi= 33 3, Hyr*lcosX 002", (Te)

m=1lIn=10
in which

_ cos(A, —1)a/2 _cos(A, —1)a/2
M= Cos(hy, F1)a/2 * 22 cos(h, —1)a/2 (7d)

Ai F1 Ay t3—dv

N = m . Cm o m (79}

for the symmetric vibration modes. In Eqgs. (7),
G,, and H,, are arbitrary coefficients again and

A, and X, are the roots of the characteristic
equations
sin\,,a=—A\,sina sin(}X,, +1)a/2 (8)
Similarly, for the antisymmetric modes. algebraic
-trigonometric polynomials and the corresponding
edge functions are analogous to those defined for the
symmetric ones in Egs. (6) and (7), except the cosine
functions are changed to sine functions, or vice versa,
and the corresponding characteristic equations are
cos(X,, + 1)a/2 9)

sin),a = A, sina

Some of the \,, obtained from Egs. (8) and (9) may
be complex numbers, and thus results in complex
edge functions. In such cases, both the real and
imaginary parts are used as independent functions in
the present Ritz procedure.

The free vibration problem is solved by substituting
Eqgs. (5)-(7) into Egs. (2) and (3) and employing the

frequency equations of the Ritz method. For the
symmetric modes. for instance, these are:
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3( Vnunc - 'T:nnx) = 8( Vmax - T;uax) -
6/1,-_,-,, ' 3Bijk -
a( V’"J\x . I:ll“x)
T— 0, (10a)
6[ Vrunx == Tmux) 3( Vm«x - T:-nax)
Ty - ol ) R

Eqgs. (10) result in a set of linear homogeneous
algebraic equations in terms of the undetermined
coefficients A, By, Cjx. Gnn. and H,, . The
vanishing determinant of this equation yields a set of
eigenvalues (natural frequencies) expressed in terms
of the non-dimensional frequency parameters.
Eigenvectors (i.e., mode shapes) involving the
coefficients 4. Bijx. Cijx. Gun. and H,,, may be
determined in the usual manner by substituting the
eigenvalues back into the homogeneous equations.
The non-dimensional frequency parameter A s
related to the natural angular frequency w by

=S e (11)
in which [ = 2b (see Fig. 1).

3. CONVERGENCE STUDIES

The three-dimensional Ritz formulation described in the
previous section is now employed to obtain reasonably
convergent frequency solutions as sufficient numbers of
algebraic-trigonometric polynomials and three-dimensional
edge functions are utilized. In all calculations, the Poisson's
ratio » has been set to 0.3. All of the frequency
calculations in this work were performed using
extended precision (28 significant figure) arithmetic.
According to the number of sides (N) of the polygonal
cylinders. they may be pentagonal. hexagonal,
heptagonal, octagonal shaped cylinders and so on.
Here, as an example for the sake of brevity,
convergence studies are summarized for the completely
free hexagonal cylindrical solid (i.e.. N=6) with
h/l=2 having two types of V-notches, both having



a=2355" but different notch depths. These are: (i)
a shallow notch (¢/a=0.75) and (ii) a deep notch
(e¢/a=10.0) for which the plane of symmetry in @ is
used (see Fig. 1). These examples are also described
as a hexagonal cylinders with a sharp crack
appropriately. The configurations of the examples are
depicted in Fig. 2 along with the cases ¢/a= 0.5 and
c/a=—10.5.

Shown in Table 1 is the first six non-dimensional
frequencies A for the deep notch (¢/a=0). It should
be noticed that the first six modes are rigid body
modes in the three-dimensional vibration of completely
free hexagonal cylindrical solids having V-notch (see
Fig. 1). These rigid body frequencies, which are zero,
are not shown in the table. Frequency results are
obtained as 4x10, 5x10, 6x10, 7x10, and 8x10
polynomial solutions are used in conjunction with 0,
5%10, 10x10. 20x10, and 30x10 edge function
solutions for each symmetry class in &.

- £
- X/
cla=0.75 cla=0).5
cla=0 cla=-0.5

Fig 2. V-notches with various depths

In Table 1. consider the fundamental frequency
mode, which is an antisymmetric one. The use of
polynomial functions alone results in the upper-bound
convergence to an inaccurate A value of 0.4578. The
trial set consisting of the first five edge functions
along with as little as 4x10 polynomials yields an
upper-bound frequency value which is much lower
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(25.3 %) than the first row of A obtained using no
edge functions. An examination of the next four rows
of data reveals that an accurate A to five significant
figures is 0.3361. Similar level of convergence rate can
be seen for the higher modes.

In Table 2. frequency data for much shallower sharp
notch (e/a=0.75) are shown. It can be seen in this
table that the fundamental frequency mode is an
antisymmetric mode. Compared with the previous data
for the deep notch, it is seen for the shallow notch that
convergence is slightly slower. Nevertheless, it can be
seen in Table 2 that convergence to five significant
figures is essentially achieved for the first six modes.

Table 1. Convergence of frequency parameters A for a
completely free hexagonal cylindrical solid (NV=6)
having a V-notch (a =355" . ¢/a=0, h/l=2)

Mode no. | Size of
(sym. edge
class*) | function | 410 [5X10|6X 107X 10 [ 8X10
0 ]0.4589 |0.4579{0.45790.4578 | 0.4578
5x10 |0.3424 |0.33810.3370]0.3369|0.3368
10> 10 | 0.3370 ]0.33%690.]0.3368|0.3367 | 0.3367
2010 | 0.3366 | 3365 |0.33640.3364 |0.3364
3010 | 0.3363 |0.3362|0.3361 |0.3361| —

0 0.4870 |0.4869|0.4752|0.4751 | 0.4751
5x10 |0.4148 |0.4139|0.4137{0.4136(0.4135
1010 | 0.4139 [0.4136]0.4135(0.4135{0.4134
2010 | 0.4138 [0.4135|0.4135(0.4134|0.4134
30x 10 {0.4137 |0.4135]0.4134|0.4134| —

Solution size of polynomials

fa—y

(A)

(A)

0 0.4562 | 0.4553|0.45530.4552 | 0.4552
5x10 |0.4445 |0.4436 |0.4412(0.4407 [ 0.4394
10> 10 | 0.4415 |0.44120.4410{0.4402]0.4394
2010 | 0.4397 | 0.43940.4392)0.4392|0.4391
30x 10 {0.4396 |0.4393|0.4392|0.4391 | —

0 0.7755 | 0.7755|0.7755]0.7755 [ 0.7755
5x 10 |0.4603 |0.4597 [ 0.4587 [ 0.4585 | 0.4581
1010 | 0.4588 |0.4587 | 0.4586 | 0.4583 | 0.4581
20x 10 | 0.4582 10.4581 |0.4580 | 0.4580|0.4580
30> 10 | 0.4581 [0.4581 [0.4580(0.4580| —

0 0.8869 |0.88210.8821|0.8816|0.8816
5x10 |0.5282 | 0.5262(0.5228 | 0.5225|0.5212
10> 10 | 0.5233 |0.5230|0.522510.5218|0.5210
20> 10 {0.5215 0.5212(0.5208 | 0.5208 | 0.5207
30x 10 | 0.5213 [0.5211]0.5207(0.5207| —

6 0 1.3226 |1.31151.3115|1.3104 | 1.3104
(S) 5x10 |0.7197 [0.7158{0.7125|0.7121|0.7113

(8)

(8)

(S)
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1010 | 0.7140 |0.7126]0.7119]0.7115(0.7109
2010 | 0.7127 |0.7114|0.7109|0.7108 [ 0.7106
3010 | 0.7126 [0.7112|0.7107 [ 0.7106 | —

* (S) symmetric mode in #: (A) antisymmetric mode in @
— No results due to matrix ill-conditioning

Table 2. Convergence of frequency parameters A for a
completely free hexagonal cylindrical solid (V= 6)
having a V-notch (a =355°, ¢/a=0.75, h/l=2)

Mode no. | Size of

(sym. edge -

0 0.4576 |0.4568 | 0.4568 | 0.4567 | 0.4567
5X10 | 0.4547 |0.4546|0.4545|0.4545 | 0.4545
10< 10 | 0.4546 [0.4545(0.4545[0.4545{ 0.4545
20 10 | 0.4544 [0.4544 | 0.4544 [ 0.4544 | 0.4544
3010 | 0.4542 [0.4541[0.4541 04541 —

0 |0.4871|0.4871|0.4759|0.4759|0.4757
5% 10 |0.4635 |0.4620/0.46190.4618|0.4617
10x 10 | 0.4618 |0.46180.4618|0.4616 | 0.4614
20 10 | 0.4602 0.4601 | 0.4600{0.4599|0.4597
30%x10 | 0.4549 |0.4549]0.4549|0.4548| —

0 ]0.4574 |0.4565|0.4565 | 0.4565 | 0.4565
5x10 |0.4565 |0.4564 [0.4564 | 0.4563 | 0.4563
10 10 | 0.4564 | 0.4563|0.4563 | 0.4563 | 0.4563
2010 | 0.4563 | 0.4563|0.4563 [ 0.4562|0.4562
30% 10 | 0.4560 | 0.4559|0.45590.4559| —

0 0.7755 | 0.77550.7755{0.7755 | 0.7755
5X10 |0.7754 [0.7754|0.7754|0.7754 | 0.7754
1010 {0.7754 |0.7754(0.7754[0.7754 | 0.7754
20% 10 | 0.7754 |0.7754 0.7754 [ 0.7754 | 0.7754
3010 | 0.7754 |0.7754(0.7754|0.7754| —

0 0.8861 | 0.8818(0.8818(0.8812|0.8812
5% 10 | 0.8717 |0.8709|0.8706 | 0.8705 | 0.8705
1010 | 0.8709 [0.8705]0.8705|0.8704|0.8704
2010 | 0.8702 [ 0.8699|0.8698 | 0.8698 | 0.8698
30x 10 | 0.8689 | 0.8685(0.8685(0.8684| —

0 0.8864 |0.8819|0.8818|0.8814 | 0.8813
510 |0.8820 0.8812]0.8812|0.88100.8810
10> 10 | 0.8816 |0.88100.880910.88090.8809
20 10 | 0.8812 |0.8807 |0.8806 | 0.8806 | 0.8805
30x 10 | 0.8794 |0.8789|0.8789|0.8789| —

Solution size of polynomials

(A)

(A)

(8)

(8)

(A)

(8)

* (S) symmetric mode in #: (A) antisymmetric mode in ¢
— No results due to matrix ill-conditioning

4. FREQUENCY RESULTS AND MODE SHAPES

Extensive convergence studies were performed to compile
the least upper bound frequency parameters for the first six
modes of the hexagonal cylindrical solid with increasing vertex
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angles and with increasing notch depths. Depicted in Fig. 2 are
four typical plate configurations which were analyzed to construct
the summary of results in Table 3. All frequency results shown
in Table 3 are converged to the five significant figures. Hence.
Table 3 provides a reasonably accurate database of frequencies
for V-notched hexagonal cylinders having various notch angles
and depths against which future results using modern
experimental or alternative theoretical approaches may be
compared.

Table 3. Frequency parameters A for a completely free
hexagonal cylindrical solid (/N= 6) with V-notches

Mode

& | ol = 2 3 1 5 6

0.75 |0.3873[0.412970.4566 |0.7791] 0.8193 [0.8473
0.5 |0.3483]0.3912'| 0.4468 |0.7672| 0.7804 |0.8240
0.0 [0.2537(0.33890.3999'|0.6060|0.7528"|0.7826
-0.5 [0.1382[0.228770.3334 [0.3598|0.5614 [0.6555
0.75 [0.4260[0.4624'[ 0.4677 |0.7763  0.8608 [0.8824
0.5 |0.3898(0.441170.4661 [0.7770 0.8201 [0.8737
0.0 [0.2981(0.36270.4527 |0.6800|0,7228"|0.7789
-0.5 |0.1668{0.2744'| 0.3993'|0.4301 | 0.5587 | 0.7751
0.75 [0.45210.45647 0.4630 [0.7756 | 0.8726 |0.8802
0.5 |0.4341'|0.4378|0.4571 |0.7756 | 0.8547 0.8640
0.0 [0.3463'(0.3899|0.4485 [0.7180| 0.7494 {0.7801
-0.5 [0.223470.3345(0.3710|0.4082| 0.4708 |0.6005
0.75 [0.4530 [0.45547 0.4642 |0.7755|0.8722_[0.8786
0.5 [0.4302/[0.4473|0.4525 |0.7752|0.8475 (0.8588
0.0 [0.33530.4230(0.4305 |0.6043 | 0.6632 |0.7179
0.5 10.2306'10.2097 | 0.3621"|0.3854 | 0.3897 |0.5824
0.75 [0.45430.45460.4633[0.7755 0.8709 | 0.8788
0.5 |0.4298'/0.4495 | 0.4522 | 0.77490.8446 |0.8596
0.0 [0.33280.41737 0.4447 |0.4991 | 0.5672 [0.7274
-0.5 10.2149/0.23331 0.3128 0.3563'| 0.4406 |0.5159
0.75 [0.454870.4550 0.4553 |0.7754]0.8689 |0.8786
0.5 0.4256(0.4471°] 0.4545 |0.7746|0.8418"|0.8529
0.0 [0.3353'(0.41367 0.4450 |0.4610 0.5289 |0.7158
-0.5 |0.1849(0.2445' 0.2945 [0.3626'| 0.4514 |0.5136
0.75 [0.45417[0.4548] 0.4559 [0.7754|0.8684 |0.8789
0.5 [0.4254(0.4467 0.4550 |0.7745|0.8416'}0.8528
0.0 |0.336110.4134'| 0.4391 |0.4580 | 0.5206 |0.7105
-0.5 10.1789(0.2477°] 0.2913 |0.3651'| 0.4519 |0.5154
0.75 [0.4536|0.4546 | 0.4564 0.7754|0.8681 |0.8790
0.5 10.4258'(0.4466| 0.4553 |0.7745|0.8419 |0.8537
0.0 [0.336870.41327 0.4328 |0.4572| 0.5140 | 0.7062
-0.5 10.1747(0.2502'| 0.2892 [0.3678'| 0.4514 |0.5177

Hexagonal | 4o01'l0 45707 0.4749 [0.7755(0.8810"|0.8814
cylinder

90°

180°

210°

300°

330°

350°

3565°

359°

" indicates antisymmetric modes
* Results cf. Liew. et al.(1997)



For various a. some interesting trends can be seen
in Table 3 in variation of frequencies as notch depth
increases, For instance, for a =330°, 350", and
355", the frequencies in the first six modes
monotonically decrease with increasing notch depth.
except in the fourth and fifth modes for a =330"
and 350° . Generally speaking, some of frequency
trends are quite unpredictable: that is, they sometimes
exhibit an increase or decrease with increasing «a,
according to the vibration mode. Regardless of the
notch angles. the frequency parameters decrease by
the notch. As can be known, the hexagonal cylinders
a=90" (see Fig. 3) and 180° do not form a V-notch,
but the frequency data indicate some interesting
special case of pentagonal and isosceles triangular
cylindrical solids.

It is important at this point to compare the frequency data
shown in Table 3 for the case of a sharp shallow crack
(c/a=0.75 and a=359") with the data for a
complete hexagonal cylindrical solid. As seen in Table
4, the crack reduces the frequencies of the symmetric
modes 3, 4 and 6 by 3.90%. 0.01% and 0.27%.
respectively, and those of the antisymmetric modes. 1,
2. and 5 by 0.61%. 0.53% and 1.46%. respectively.
For the of a sharp, deep crack (¢/a=0 and
a=359"), the per cent reductions in frequencies of
the symmetric modes 3, 4. 5 and 6 are 8.87, 41.04,
41.66 and 19.88 per cent. respectively, and those in
the antisymmetric modes 1 and 2 are 26.21 and 9.58
per cent, respectively.
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Fig 3. Cylinders with 90° and various depth ratios
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Comparisons are made in Figs. 4 and 5 for frequency
parameters /A of hexagonal cylinders with two different
notch angles (i.e.. @ =270" and 355 ° ). having ¢/a =
0.75, 0. and -0.5. In these graphs the frequency
results obtained by the present three-dimensional
clasticity-based theory are compared with those
produced by using the finite element approach. The
finite element solutions were obtained using more than
eighty thousand elements of soliddd with eight nodes
and modal analysis with block Lancoz mode extraction
method in ANSYS (2001). Here, very fine mesh
generation is used near the terminus edge of the
completely free, notched hexagonal cylinder in order to
consider the stress singularities. It can be seen in Figs.
4 and 5 that the present three-dimensional theory gives
slightly lower A values than those of FEM, and also offers
favorable agreement between two approaches.
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Fig 4. Comparison of frequency A for a completely free

polygonal cylindrical solids with V-notches (e = 270 ° )
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Figs. 6 and 7 depict the deformed mode shape contours
of cylindrical solids with hexagonal cross-sections with
a=270" and 355 ° . respectively, having ¢/a = 0.75, 0
and -0.5. It can be observed from these mode shapes that
there are axial extensional, first or second lateral bending
and axial torsional motions according to each mode and
¢/a ratios. Non-dimensional frequencies shown with the
mode shapes correspond to the data listed in Table 3.

c/a
Mode No. 075 0
1
0.4521 0.2234
2
0.4564 0.3899
3
0.3710
0.7756 0.7180 0.4082
0.8726 0.7494 0.4708

440 s=u7zsts) =28 M2 43(5H 1013) 20094 88

0.8802

0.7801

0.6005

Fig 6. Vibration mode shapes of hexagonal cylinder with
a =270° and different depth ratios (h/l = 2)

¢/a
Mede T 0.75 0 05
_p—
1
0.4541 0.3361 0.1789
2
0.4548 04134
3
- ." !
0.4559
A
0.7754
5
0.8684 0.5206 0.4519




0.8789 0.7105 0.5154

Fig 7. Vibration mode shapes of hexagonal cylinder with
a =365° and different depth ratios (h/f = 2)

The effects of varying the number of sides of polygonal
cross-section are observed in Table 4, where o = 355 ° .
According to the number of sides (N), they may be
considered as the cylindrical solids with octagonal (N =
8), decagonal (N=10) and dodecagonal (N=12)
cross-sections.

For various number of sides, some interesting trends are
shown in Table 4 in the variation of frequency parameters
as the notch depth decreases(i.e., ¢/a increases). For
¢/a = 0, the fundamental frequencies increase with
increasing the number of sides, whereas for ¢/a =
0.75, they decrease at increased number of sides.
The higher modes sometimes display an increase or
a decrease with increasing N.

For various number of sides, some interesting trends are
shown in Table 4 in the variation of frequency parameters
as the notch depth decreases(i.e., c/z increases). For
¢/a = 0, the fundamental frequencies increase with
increasing the number of sides, whereas for c/a =
0.75. they decrease at increased number of sides.
The higher modes sometimes display an increase or
a decrease with increasing N.

Table 4. Frequency parameters A for a completely free
N-sided cylindrical solids with V-notches (@ = 355° )

s N?ci of Mode No.
Wl 12345 ] s
6 |0.3361']0.4134'|0.4391 | 0.4580 | 0.5206 | 0.7105

8 0.3409|0.4086 | 0.4439 | 0.4618 | 0.5338 | 0.7213

y 10 [0.3425|0.4067 | 0.4427 | 0.4667 | 0.5394 | 0.7259
12 [0.3434'|0.4056 | 0.4417 | 0.4697 | 0.5425 | 0.7285
0.4541'[0.4548 | 0.4559 | 0.7754 [0.8684 | 0.8789

|8 0.4475 | 0.4492 [0.4554| 0.7760 [0.8650'] 0.8763

10 |0.4446 | 0.4478 0.4602 | 0.7762 [0.8637 | 0.8773
12 |0.4441 | 0.4453 |0.4577 | 0.7763 |0.8633 | 0.8749

" indicates antisymmetric modes
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5. CONCLUDING REMARKS

Highly accurate frequencies and mode shapes for
completely free solid cylinders of N-sided polygonal
cross-section with V-notches or cracks have been obtained
using a three-dimensional continuum-based Ritz procedure.
In this approximate procedure, the assumed displacements of
the hexagonal solid constitutes a hybrid set of
mathematically complete algebraic-trigonometric polynomials
with three- dimensional edge functions that account tri-axial
stress singularities along the terminus edge of the V-notch.
The efficacy of such edge functions has been substantiated
by an convergence study of non- dimensional frequencies.

A detailed numerical table has been presented,
showing the variations of non—dimensional frequencies
(accurate to five significant figures) with two geometric
parameters: namely, notch angles and notch depths.
Some fundamental understanding of the effect of highly
localized stresses on the notched or cracked cylinder
dynamics can be obtained through careful examination
of the frequency and mode shape data offered here in.

ACKNOWLEDGEMENTS

This work was supported by the Korea Research
Foundation Grant funded by the Korean Government
(KRF-2005-041-D00851).

REFERENCES

Timoshenko, S.P., (1921a) On the Correction for Shaer of the
Differential Equation for Transverse Vibration of Prismatic
Bars, Philosophical Magazine, Vol. 41, pp.744-746.

Timoshenko, S.P.. (1921b) On the Transverse Vibration of Bars
Uniform Cross-section, Philosophical Magazine, Vol. 43,
pp. 125-131.

Kim, JW., Jung, HY., and Kwon LK., (2001) Three-dimensional
Vibration Analysis of Parallelepipeds with V-notches or
Sharp Cracks, Proceedings of IMAC-XIX: A Conference
of Structural Dynamics, Vol. 2, pp.1528-1534.

Kim, J.W., Jung, HY.. Lee. D.W. and Lee S.S.. (2006)
Transverse Vibration of V-notched or Cracked Plates
with Nrsided Polygonal Boundary Shape. International
Symposium of IASS-APCS, DR33.

HIRUTEHS =23 H21H 45(EF 1013) 20004 88 441



uze

Kim. J.W. and Jung, H.Y.. (2007) Accurate Vibration Analysis of p-Ritz Method, Journal of Sound and Vibration,
N-sided Polygonal Mindlin Plates with V-notches or Vo. 200, No. 4, pp.505-518.
Sharp Cracks, Proceedings of the International ANSYS User’ Manual, (2001) Release 6.0, ANSYS, Inc.

Conference on ANDE 2007, Vol. 2, pp. 1456-1461..
Liew, KM., Hung, KC. and Lim, MK., (1997) (H5=x} - 2009. 4. 22 / AAKY 2009, 6. 25/

Three-dimensional Vibration Analysis of Solid AR 2009. 8. 10)
Cylinders of Polygonal Cross-Section Using the

442 #s2u7xitE =27 H21A 45(5 1015) 20004 8%



