• Title/Summary/Keyword: poly-crystallization

Search Result 321, Processing Time 0.024 seconds

Preparation and Crystallization Behavior of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Grafted with Poly(N-vinylpyrrolidone) (Poly(N-vinylpyrrolidone)이 그래프트된 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 공중합체의 합성 및 결정화 거동)

  • Wang, Wei;Zhang, Yu;Chen, Yanmo
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.385-392
    • /
    • 2007
  • Poly (N-vinylpyrrolidone) (PVP) groups were grafted onto a poly(3-hydroxybutyrate-co-3-hydroryvalerate) (PHBV) backbone in order to modify its properties and synthesize a novel biocompatible copolymer. The crystallization behavior of PHBV and grafted PHBV was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). During the cooling-induced crystallization process, the crystallization temperature and the crystallization rate of the grafted PHBV decreased with increasing PVP weight fraction. On the heating scans of all grafted PHBV samples, a new crystallization exothermic peak appeared at almost the same temperature, suggesting the operation of a recrystallization process, while the melting temperature ($T_m$) and the apparent enthalpy of fusion (${\Delta}H_f$) were not affected by graft modification. During the isothermal crystallization process at the same temperature, the presence of side PVP groups decreased the spherulitic growth rate and the spherulitic band spacing with increasing PVP weight fraction in samples.

Kinetics of Isothermal Crystallization in Poly(ethylene oxide) and Poly(styrene-co-acrylic acid)Blends (Poly(ethylene oxide)/Poly(styrene-co-acrylic acid) Blends의 등온 결정화 속도에 관한 연구)

  • Lee, Sang-Cheol;Lee, Mu-Seong;Jo, Won-Ho
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.151-155
    • /
    • 1991
  • The kinetics of isothermal crystallization in blends of poly(ethylene oxide) (PEO) and poly(styrene-co-acrylic acid) (SAA) has been examined as a function of the blend ratio, the copolymer composition, and the crystallization temperature, based on the Avrami eauation. The Avrami exponents were mostly chose to 2, independent of the crystallization temperature. The crystallization rate of PEO in PEO/SAA blends decreased with the increase of SAA content. And also, the higher the acrylic acid content in the SAA copolymer, 7he slower the crystallization rate of PEO in the blends.

  • PDF

Morphology and Crystallization in Mixtures of Poly(methyl methacrylate)-Poly(pentafluorostyrene)-Poly(methyl methacrylate) Triblock Copolymer and Poly(vinylidene fluoride)

  • Kim, Geon-Seok;Kang, Min-Sung;Choi, Mi-Ju;Kwon, Yong-Ku;Lee, Kwang-Hee
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.757-762
    • /
    • 2009
  • The micro domain structures and crystallization behavior of the binary blends of poly(methyl methacrylate)-b-poly(pentafluorostyrene)-b-poly(methyl methacrylate) (PMMA-PPFS-PMMA) triblock copolymer with a low molecular weight poly(vinylidene fluoride) (PVDF) were investigated by small-angle X-ray scattering (SAXS), small-angle light scattering (SALS), transmission electron microscopy (TEM), optical microscopy, and differential scanning calorimetry (DSC). A symmetric, PMMA-PPFS-PMMA triblock copolymer with a PPFS weight fraction of 33% was blended with PVDF in N,N-dimethylacetamide (DMAc). In the wide range of PVDF concentration between 10.0 and 30.0 wt%, PVDF was completely incorporated within the PMMA micro domains of PMMA-PPFS-PMMA without further phase separation on a micrometer scale. The addition of PVDF altered the phase morphology of PMMA-PPFS-PMMA from well-defined lamellar to disordered. The crystallization of PVDF significantly disturbed the domain structure of PMMA-PPFS-PMMA in the blends, resulting in a poorly-ordered morphology. PVDF displayed unique crystallization behavior as a result of the space constraints imposed by the domain structure of PMMA-PPFS-PMMA. The pre-existing microdomain structures restricted the lamellar orientation and favored a random arrangement of lamellar crystallites.

Copolyester Studies VIII. Crystallization Behaviours of Poly(ethylene terephthalate) Modified by the Flexible Diol Unit (Polyester의 개질에 관한 연구 (제8보). 유연한 디올 Unit로 개질된 Poly(ethylene terephthalate)의 결정화 거동)

  • Tae Oan Ahn;Jung Ho Kim;Han Mo Jeong
    • Journal of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.276-284
    • /
    • 1988
  • The crystallization behaviours of poly(ethylene terephthalate) modified by 1, 3-propane diol, 1, 5-pentane diol, 1, 6-hexane diol, or poly(ethylene glycol) of molecular weight 300 as a third component were studied by isothermal and nonisothermal crystallization. When the content of the third diol was about 4 mol %, the isothermal crystallization rate at the same supercooling below the melting temperature and the nonisothermal crystallization rate at the same overheating above the glass transition temperature were increased more by the shorter flexible diol unit. On the contrary the nonisothermal crystallization rate at the same supercooling below the melting temperature was increased more by the longer flexible diol unit.

  • PDF

Crystallization of Amorphous Silicon Films Using Joule Heating

  • Ro, Jae-Sang
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.1
    • /
    • pp.20-24
    • /
    • 2014
  • Joule heat is generated by applying an electric filed to a conductive layer located beneath or above the amorphous silicon film, and is used to raise the temperature of the silicon film to crystallization temperature. An electric field was applied to an indium tin oxide (ITO) conductive layer to induce Joule heating in order to carry out the crystallization of amorphous silicon. Polycrystalline silicon was produced within the range of a millisecond. To investigate the kinetics of Joule-heating induced crystallization (JIC) solid phase crystallization was conducted using amorphous silicon films deposited by plasma enhanced chemical vapor deposition and using tube furnace in nitrogen ambient. Microscopic and macroscopic uniformity of crystallinity of JIC poly-Si was measured to have better uniformity compared to that of poly-Si produced by other methods such as metal induced crystallization and Excimer laser crystallization.

Fabrication and Characteristics of poly-Si thin film transistors by double-metal induced lteral crystallization at 40$0^{\circ}C$ (이중 금속 측면 결정화를 이용한 40$0^{\circ}C$ 다결정 실리콘 박막 트랜지서터 제작 및 그 특성에 관한 연구)

  • 이병일;정원철;김광호;안평수;신진욱;조승기
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.33-39
    • /
    • 1997
  • The crystallization temperature of an amorphous silicon (a-Si) can be lowered down to 400.deg. C by a new method : Double-metal induced lateral crystallization (DMILC). The a-Si film was laterally crystallized from Ni and Pd deposited area, and its lateral crystallization rate reaches up to 0.2.mu.m/hour at that temperature and depends on the overlap length of Ni and Pd films; the shorter the overlap length, the faster the rate. Poly-Silicon thin film transistors (poly-Si TFT's) fabricated by DMILC at 400.deg. C show a field effect mobility of 38.5cm$^{3}$/Vs, a minimum leakage current of 1pA/.mu.m, and a slope of 1.4V/dec. The overlap length does not affect the characteristics of the poly-Si TFT's, but determines the lateral crystallization rate.

  • PDF

Characteristics of poly-Si TFTs using Excimer Laser Annealing Crystallization and high-k Gate Dielectrics (Excimer Laser Annealing 결정화 방법 및 고유전 게이트 절연막을 사용한 poly-Si TFT의 특성)

  • Lee, Woo-Hyun;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-4
    • /
    • 2008
  • The electrical characteristics of polycrystalline silicon (poly-Si) thin film transistor (TFT) crystallized by excimer laser annealing (ELA) method were evaluated, The polycrystalline silicon thin-film transistor (poly-Si TFT) has higher electric field-effect-mobility and larger drivability than the amorphous silicon TFT. However, to poly-Si TFT's using conventional processes, the temperature must be very high. For this reason, an amorphous silicon film on a buried oxide was crystallized by annealing with a KrF excimer laser (248 nm)to fabricate a poly-Si film at low temperature. Then, High permittivity $HfO_2$ of 20 nm as the gate-insulator was deposited by atomic layer deposition (ALD) to low temperature process. In addition, the solid phase crystallization (SPC) was compared to the ELA method as a crystallization technique of amorphous-silicon film. As a result, the crystallinity and surface roughness of poly-Si crystallized by ELA method was superior to the SPC method. Also, we obtained excellent device characteristics from the Poly-Si TFT fabricated by the ELA crystallization method.

Fabrication of Polycrystalline Si Films by Silicide-Enhanced Rapid Thermal Annealing and Their Application to Thin Film Transistors (Silicide-Enhanced Rapid Thermal Annealing을 이용한 다결정 Si 박막의 제조 및 다결정 Si 박막 트랜지스터에의 응용)

  • Kim, Jone Soo;Moon, Sun Hong;Yang, Yong Ho;Kang, Sung Mo;Ahn, Byung Tae
    • Korean Journal of Materials Research
    • /
    • v.24 no.9
    • /
    • pp.443-450
    • /
    • 2014
  • Amorphous (a-Si) films were epitaxially crystallized on a very thin large-grained poly-Si seed layer by a silicide-enhanced rapid thermal annealing (SERTA) process. The poly-Si seed layer contained a small amount of nickel silicide which can enhance crystallization of the upper layer of the a-Si film at lower temperature. A 5-nm thick poly-Si seed layer was then prepared by the crystallization of an a-Si film using the vapor-induced crystallization process in a $NiCl_2$ environment. After removing surface oxide on the seed layer, a 45-nm thick a-Si film was deposited on the poly-Si seed layer by hot-wire chemical vapor deposition at $200^{\circ}C$. The epitaxial crystallization of the top a-Si layer was performed by the rapid thermal annealing (RTA) process at $730^{\circ}C$ for 5 min in Ar as an ambient atmosphere. Considering the needle-like grains as well as the crystallization temperature of the top layer as produced by the SERTA process, it was thought that the top a-Si layer was epitaxially crystallized with the help of $NiSi_2$ precipitates that originated from the poly-Si seed layer. The crystallinity of the SERTA processed poly-Si thin films was better than the other crystallization process, due to the high-temperature RTA process. The Ni concentration in the poly-Si film fabricated by the SERTA process was reduced to $1{\times}10^{18}cm^{-3}$. The maximum field-effect mobility and substrate swing of the p-channel poly-Si thin-film transistors (TFTs) using the poly-Si film prepared by the SERTA process were $85cm^2/V{\cdot}s$ and 1.23 V/decade at $V_{ds}=-3V$, respectively. The off current was little increased under reverse bias from $1.0{\times}10^{-11}$ A. Our results showed that the SERTA process is a promising technology for high quality poly-Si film, which enables the fabrication of high mobility TFTs. In addition, it is expected that poly-Si TFTs with low leakage current can be fabricated with more precise experiments.

Fabrication of polycrystalline Si films by rapid thermal annealing of amorphous Si film using a poly-Si seed layer grown by vapor-induced crystallization

  • Yang, Yong-Ho;An, Gyeong-Min;Gang, Seung-Mo;An, Byeong-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.58.1-58.1
    • /
    • 2010
  • We have developed a novel crystallization process, where the crystallization temperature is lowered compared to the conventional RTA process and the metal contamination is lowered compared to the conventional VIC process. A very-thin a-Si film was deposited and crystallized at $550^{\circ}C$ for 3 h by the VIC process and then a thick a-Si film was deposited and crystallized by the RTA process at $680^{\circ}C$ for 5 min using the VIC poly-Si layer as a crystallization seed layer. The RTA crystallized temperature could be lowered up to $50^{\circ}C$, compared to RTA process alone. The poly-Si film appeared a needle-like growth front and relatively well-arranged (111) orientation. In addition, the Ni concentration in the poly-Si film was lowered to $3{\times}10^{17}\;cm^{-3}$ and that at the poly-Si/$SiO_2$ interface was lowered to $5{\times}10^{19}\;cm^{-3}$. The reduction in metal contamination could be greatly helpful to achieve a low leakage current in poly-Si TFT, which is the critical parameter for commercialization of AMOLED.

  • PDF

The Study of poly-Si Eilm Crystallized on a Mo substrate for a thin film device Application (박막소자응용을 위한 Mo 기판 위에 고온결정화된 poly-Si 박막연구)

  • 김도영;서창기;심명석;김치형;이준신
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.130-135
    • /
    • 2003
  • Polycrystalline silicon thin films have been used for low cost thin film device application. However, it was very difficult to fabricate high performance poly-Si at a temperature lower than $600^{\circ}C$ for glass substrate because the crystallization process technologies like conventional solid phase crystallization (SPC) require the number of high temperature (600-$1000^{\circ}C$) process. The objective of this paper is to grow poly-Si on flexible substrate using a rapid thermal crystallization (RTC) of amorphous silicon (a-Si) layer and make the high temperature process possible on molybdenum substrate. For the high temperature poly-Si growth, we deposited the a-Si film on the molybdenum sheet having a thickness of 150 $\mu\textrm{m}$ as flexible and low cost substrate. For crystallization, the heat treatment was performed in a RTA system. The experimental results show the grain size larger than 0.5 $\mu\textrm{m}$ and conductivity of $10^{-5}$ S/cm. The a-Si was crystallized at $1050^{\circ}C$ within 3min and improved crystal volume fraction of 92 % by RTA. We have successfully achieved a field effect mobility over 67 $\textrm{cm}^2$/Vs.