Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.9.443

Fabrication of Polycrystalline Si Films by Silicide-Enhanced Rapid Thermal Annealing and Their Application to Thin Film Transistors  

Kim, Jone Soo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Moon, Sun Hong (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Yang, Yong Ho (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Kang, Sung Mo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Ahn, Byung Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.24, no.9, 2014 , pp. 443-450 More about this Journal
Abstract
Amorphous (a-Si) films were epitaxially crystallized on a very thin large-grained poly-Si seed layer by a silicide-enhanced rapid thermal annealing (SERTA) process. The poly-Si seed layer contained a small amount of nickel silicide which can enhance crystallization of the upper layer of the a-Si film at lower temperature. A 5-nm thick poly-Si seed layer was then prepared by the crystallization of an a-Si film using the vapor-induced crystallization process in a $NiCl_2$ environment. After removing surface oxide on the seed layer, a 45-nm thick a-Si film was deposited on the poly-Si seed layer by hot-wire chemical vapor deposition at $200^{\circ}C$. The epitaxial crystallization of the top a-Si layer was performed by the rapid thermal annealing (RTA) process at $730^{\circ}C$ for 5 min in Ar as an ambient atmosphere. Considering the needle-like grains as well as the crystallization temperature of the top layer as produced by the SERTA process, it was thought that the top a-Si layer was epitaxially crystallized with the help of $NiSi_2$ precipitates that originated from the poly-Si seed layer. The crystallinity of the SERTA processed poly-Si thin films was better than the other crystallization process, due to the high-temperature RTA process. The Ni concentration in the poly-Si film fabricated by the SERTA process was reduced to $1{\times}10^{18}cm^{-3}$. The maximum field-effect mobility and substrate swing of the p-channel poly-Si thin-film transistors (TFTs) using the poly-Si film prepared by the SERTA process were $85cm^2/V{\cdot}s$ and 1.23 V/decade at $V_{ds}=-3V$, respectively. The off current was little increased under reverse bias from $1.0{\times}10^{-11}$ A. Our results showed that the SERTA process is a promising technology for high quality poly-Si film, which enables the fabrication of high mobility TFTs. In addition, it is expected that poly-Si TFTs with low leakage current can be fabricated with more precise experiments.
Keywords
thin film transistor; poly-Si film; crystallization of a-Si film; vapor-induced crystallization; rapid thermal annealing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. W. Lee, S. K. Joo, IEEE Electron Dev. Lett., 17, 160 (1996).   DOI   ScienceOn
2 J. Y. W. Seto, J. Appl. Phys., 46, 5247 (1975).   DOI   ScienceOn
3 G. Baccarani, B. Ricco, and G. Spandini, J. Appl. Phys., 49, 5565 (1978).   DOI   ScienceOn
4 H. Zhang, N. Kusumoto, T. Imushima, and S. Yamazaki, IEEE Electron Device Lett., 13, 297 (1992).   DOI
5 R. C. Cammarata, C. V. Thompson, C. Hayzelden, and K. N. Tu, J. Mater. Res., 10, 2133 (1990).
6 C. Hayzelden and J. L. Batstone, J. Appl. Phys., 73, 8279 (1993).   DOI   ScienceOn
7 J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, C. O. Kim, Nature, 395, 481 (1998).   DOI   ScienceOn
8 S. I. Jun, Y. H. Yang, J. B. Lee, and D. K. Choi, Appl. Phys. lett., 75, 2235 (1999).   DOI
9 J. H. Eom, K. U. Lee, and B. T. Ahn, Electrochem. Solid State Lett., 8, G65 (2005).   DOI   ScienceOn
10 J. H. Eom, K. U. Lee, B. T. Ahn, J. Electrochem. Soc., 154, H194 (2007).   DOI
11 J. H. Choi, D. Y. Kim, B. K. Choo, W. S. Sohn, and J. Jang, Electrochem. Solid State Lett., 6, G16 (2003).   DOI   ScienceOn
12 S. M. Kang, K. M. Ahn, B. T. Ahn, J. Electrochem. Soc., 159, H29 (2012).   DOI
13 K. M. Ahn. S. M. Kang, B. T. Ahn, Curr. Appl. Phys., 12, 1454 (2012).   DOI
14 Y. H. Yang, K. M. Ahn, S. M. Kang, S. H. Moon, B. T. Ahn, H. S. Kwon, Electron. Mater. Lett., in publication.
15 I. Gordon, D. Van Gestel, K. Van Nieuwenhuysen, L. Carnel, G. Beaucarne and J. Poortmans, Thin Solid Films, 487, 113 (2005).   DOI
16 A. Marmorstein, A. T. Voutsas and R. Solanki. J. Appl. Phys., 82, 4303 (1997).   DOI   ScienceOn
17 J. H. Ahn and B. T. Ahn, J. Electrochem. Soc., 148, H115 (2001).   DOI   ScienceOn
18 J. N. Lee, Y. W. Choi, B. J. Lee, B. T. Ahn, J. Appl. Phys., 82, 2918 (1997).   DOI
19 Y. H. Yang, K. M. Ahn, B. T. Ahn, Electrochem. Solid State Lett., 13, J92 (2010).   DOI
20 D. K. Sohn, J. N. Lee, S. W. Kang, B. T. Ahn, Jap. J. Appl. Phys., 35, 1005 (1996).   DOI