Preparation and Crystallization Behavior of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Grafted with Poly(N-vinylpyrrolidone)

Poly(N-vinylpyrrolidone)이 그래프트된 Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) 공중합체의 합성 및 결정화 거동

  • Wang, Wei (College of Biological & Chemical Engineering, Jiaxing University) ;
  • Zhang, Yu (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University) ;
  • Chen, Yanmo (State Key Laboratory for Modification of Chemical Fiber & Polymeric Materials, College of Materials Science & Engineering, Donghua University)
  • Published : 2007.09.30

Abstract

Poly (N-vinylpyrrolidone) (PVP) groups were grafted onto a poly(3-hydroxybutyrate-co-3-hydroryvalerate) (PHBV) backbone in order to modify its properties and synthesize a novel biocompatible copolymer. The crystallization behavior of PHBV and grafted PHBV was investigated by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). During the cooling-induced crystallization process, the crystallization temperature and the crystallization rate of the grafted PHBV decreased with increasing PVP weight fraction. On the heating scans of all grafted PHBV samples, a new crystallization exothermic peak appeared at almost the same temperature, suggesting the operation of a recrystallization process, while the melting temperature ($T_m$) and the apparent enthalpy of fusion (${\Delta}H_f$) were not affected by graft modification. During the isothermal crystallization process at the same temperature, the presence of side PVP groups decreased the spherulitic growth rate and the spherulitic band spacing with increasing PVP weight fraction in samples.

Keywords

References

  1. K. J. Ganzeveld, A. V. Haen, M. H. V. Agteren, W. D. Koning, and A. J. M. Schoot Uiterkamp, J. Clean Prod. 7, 413 (1999) https://doi.org/10.1016/S0959-6526(99)00159-6
  2. I. Taniguchi, K. Kagotani, and Y. Kimura, Green Chem., 5, 545 (2003) https://doi.org/10.1039/b304800b
  3. H. X. Sun, Y. H. Wang, Z. Y. Wu, Q. K. Yang, W. B. Li, and C. L. Huang, Biotechnol. Bull, 2, 5 (2004)
  4. T. Wang, L. Ye, and Y. R. Song, Chinese Sci Bull., 44, 1729 (1999) https://doi.org/10.1007/BF02886149
  5. P. D. Haene, E. E. Remsen, and J. Asrar, Macro-molecules, 32, 5229 (1999) https://doi.org/10.1021/ma981911k
  6. B. Fei, C. Chen, S. Chen, S. W. Peng, Y. G. Zhuang, Y. X. An, and L. S. Dong, Polym. Int., 53, 937 (2004) https://doi.org/10.1002/pi.1477
  7. A. Mas, H. Jaaba, and F. Schue, J. Mecromol. Sci.; Pure Appl. Chem.. A34, 67 (1997)
  8. I. Gursel, C. Balcik, Y. Arica, O. Akkus, N. Akkas, and V. Hasirci, Biomaterials, 19, 1137 (1998) https://doi.org/10.1016/S0142-9612(98)00009-X
  9. Y. S. Chun and W. N. Kim, Polymer, 41, 2305 (2000) https://doi.org/10.1016/S0032-3861(99)00534-0
  10. Z. B. Qiu, T. Ikehara, and T. Nishi, Polymer, 44, 7519 (2003) https://doi.org/10.1016/j.polymer.2003.09.029
  11. Z. B. Qiu, S. Fujinamib, M. Komurab, K. Nakajimab, T. Ikehara, and T. Nishi, Polymer, 45, 4355 (2004) https://doi.org/10.1016/j.polymer.2004.04.054
  12. Y. He, N. Asakawa, and Y. Inoue, J. Polym. Sci.; Part BtPolym. Phys., 38, 2891 (2000) https://doi.org/10.1002/1099-0488(20001115)38:22<2891::AID-POLB40>3.0.CO;2-V
  13. H. S. Lee and T. Y. Lee, Polymer, 38, 4505 (1997) https://doi.org/10.1016/S0032-3861(96)01050-6
  14. Y. Tesema, D. Raghavan, and III J. Stubbs, J. Appl. Polym. Sci, 93, 2445 (2004) https://doi.org/10.1002/app.20787
  15. S. G. Hu, C. H. Jou, and M. C. Yang, Biomsterisls, 24, 2685 (2003)
  16. S. G. Hu, C. H. Jou, and M. C .Yang, J. Appl. Polym. Sci, 88, 2797 (2003) https://doi.org/10.1002/app.12055
  17. K. Fujimoto, Y. Takebayashi, H. Inoue, and Y. Ikada, J. Polym. Sci.; Part A: Polym. Chem., 31, 1035 (1993) https://doi.org/10.1002/pola.1993.080310426
  18. J. Park, J. G. Park, W. M. Choi, C. S. Ha, and W. J. Cho, J. Appl. Polym. Sci, 74, 1432 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991107)74:6<1432::AID-APP16>3.0.CO;2-Z
  19. M. Kiillrot, U. Edlund, and A. C. Albertsson, Biomateriels, 27, 1788 (2006)
  20. Y. Zhang and Y. M. Lam, J. Colloid Interf. Sci, 285, 80 (2005) https://doi.org/10.1016/j.jcis.2004.11.028
  21. S. E. Cook, I. K. Park, E. M. Kim, H. Jeong, T. G. Park, Y. Jaie, T. Akaikea, and C. S. Cho, J. Control. Release, 105, 151 (2005) https://doi.org/10.1016/j.jconrel.2005.03.011
  22. I. K. Park, J. E. Ihm, Y. H. Park, Y. J. Choi, S. I. Kim, W. J. Kim, T. Akaike, and C. S. Cho, J. Control. Release, 86, 349 (2003) https://doi.org/10.1016/S0168-3659(02)00365-6
  23. L. L. Wang and Y. S. Xu, Iran. Polym. J., 15, 467 (2006)
  24. J. L. Willett, M. A. Kotnis, G. S. O'Brien, G. F. Fanta, and S. H. Gordon, J. Appl. Polym. Sci, 70, 1121(1998) https://doi.org/10.1002/(SICI)1097-4628(19981107)70:6<1121::AID-APP8>3.0.CO;2-Q
  25. P. Manaresi, V. Passalacqua, and F. Pilati, Polymer, 16, 520 (1975) https://doi.org/10.1016/0032-3861(75)90011-7
  26. S. Bloernbergen, D. A. Holden, G. K. Hamer, T. L. Bluhm, and R. H. Marchessault, Macromolecules, 19, 2865 (1986) https://doi.org/10.1021/ma00165a034
  27. J. Li, M. F. Lai, and J. J. Liu, J. Appl. Polym. Sci, 92, 2514 (2004) https://doi.org/10.1002/app.20211
  28. M. Scandola, G. Ceccorulli, M. Pizzoli, and M. Gazzano, Macromolecules, 25, 1405 (1992) https://doi.org/10.1021/ma00031a008
  29. T. L. Bluhm, G. K. Hamer, R. H. Marchessault, C. A. Fyfe, and R. P. Veregin, Macromolecules, 19, 2871 (1986) https://doi.org/10.1021/ma00165a035
  30. D. R. Fagerburg, J. J. Watkins, and P. B. Lawrence, Macromolecules, 26, 114 (1993) https://doi.org/10.1021/ma00053a018
  31. P. X. Xing, L. S. Dong, Y. X. An, and Z. L. Feng, Macromolecules, 30, 2726 (1997) https://doi.org/10.1021/ma960615+
  32. B. Fei, C. Chen, H. Wu, S. W. Peng, X. Y. Wang, L. S. Dong, and J. H. Xin, Polymer, 45, 6275 (2004) https://doi.org/10.1016/j.polymer.2004.07.008