• Title/Summary/Keyword: poly (lactide-co-glycolide)

Search Result 120, Processing Time 0.022 seconds

Preparation of Poly(Dt-lactide-co-glycolide) Nanoparticles by PEG-PPG Diblock Copolymer (PEG-PPG 블록 공중합체를 이용한 폴리(DL-락타이드-co-글리콜라이드) 나노입자의 제조)

  • 정택규;오유미;신병철
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.370-376
    • /
    • 2003
  • Poly(DL-lactide-co-glycolide) nanoparticles were prepared by the modified spontaneous emulsification solvent diffusion method. Polymer solution was prepared by two water-soluble organic solvents, such as ethanol and acetone. Because of its biocompatible nature, PEG-PPG diblock copolymer was used as surfactant and stabilizer. The influence of several preparative variables on the nanoparticle formation, such as type and concentration of stabilizing agent, stirring methods, water/oil phase ratio and polymer concentration were investigated in order to control and optimize the process. After preparation of nanoparticles, particle size and distribution were evaluated by the light scattering particle analyzer. As results, the particle size was 50-200 nm and dispersibility was monodisperse. It was found that the appropriate selections of binary solvent mixtures and polymeric concentrations in both organic and aqueous phases could provide a good yield and favorable physical properties of PLGA nanoparticles.

Interaction of Fibroblast Cell onto Physicochemically Treated PLGA Surfaces (물리화학적 처리된 PLGA 표면의 섬유아세포와의 상호작용)

  • 강길선;이상진;전주형;이진호;이배방
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.869-876
    • /
    • 2000
  • In order to improve the cell-compatability of poly(L-lactide-co-glycolide) (75 : 25 by mole ratio of lactide to glycolide, PLGA) surfaces, the physicochemical treatments have been demonstrated. Chemical treatments were 70% perchloric acid. 50% sulfuric acid and 0.5 N sodium hydroxide solution and physical methods were corona and plasma treatment. The water contact angle of surface treated PLGA decreased from 73$^{\circ}$ to 50~60$^{\circ}$, i.e., increased hydrophilicity, due to the introduction of oxygen-containing functional group onto PLGA backbone by the measurement of an electron spectroscopy for chemical analysis. It could be observed that the adhesion and growth of fibroblast cell on physicochemically treated PLGA surfaces, especially perchloric acid treated PLGA surface, were more active than on the controt. In conclusion, it seems that surface wettability as hydrophilicity of PLGA plays an important role in cell adhesion, spreading and growth.

  • PDF

Doxorubicin Release from Core-Shell Type Nanoparticles of Poly(DL-lactide-co-glycolide)-Grafted Dextran

  • Jeong, Young-Il;Choi, Ki-Choon;Song, Chae-Eun
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.712-719
    • /
    • 2006
  • In this study, we prepared core-shell type nanoparticles of a poly(DL-lactide-co-glycolide) (PLGA) grafted-dextran (DexLG) copolymer with varying graft ratio of PLGA. The synthesis of the DexLG copolymer was confirmed by $^1H$ nuclear magnetic resonance (NMR) spectroscopy. The DexLG copolymer was able to form nanoparticles in water by self-aggregating process, and their particle size was around $50\;nm{\sim}300\;nm$ according to the graft ratio of PLGA. Morphological observations using a transmission electron microscope (TEM) showed that the nanoparticles of the DexLG copolymer have uniformly spherical shapes. From fluorescence probe study using pyrene as a hydrophobic probe, critical association concentration (CAC) values determined from the fluorescence excitation spectra were increased as increase of DS of PLGA. $^1H-NMR$ spectroscopy using $D_2O$ and DMSO approved that DexLG nanoparticles have core-shell structure, i.e. hydrophobic block PLGA consisted inner-core as a drug-incorporating domain and dextran consisted as a hydrated outershell. Drug release rate from DexLG nano-particles became faster in the presence of dextranase in spite of the release rate not being significantly changed at high graft ratio of PLGA. Core-shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier. In conclusion, size, morphology, and molecular structure of DexLG nanoparticles are available to consider as an oral drug targeting nanoparticles.

Preparation and Characterization of BICND-loaded Multi-Layer PLGA Wafer Containing Glycolide Monomer (글리콜라이드 단량체를 함유한 BICNU 함유 다중층 PLGA웨이퍼의 제조 및 특성결정)

  • 채강수;이진수;정제교;조선행;이해방;강길선
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.335-343
    • /
    • 2004
  • Carmustine (l,3-bis(2-chloroethyI)-1-nitrosourea, BICNU) used as antineoplastic drug for the treatment of brain tumor is not appropriate for the long term delivery, because it has short biological half life. Therefore, poly(D,L-lactide-co-glycolide) (PLGA) is useful as drug carrier for the long term delivery due to bulk erosion property. Glycolide monomer is applied to release of BICNU owing to non-toxic and monomeric components after biodegradation of PLGA. In this study, BICNU-loaded PLGA wafers with or without glycolide monomer were fabricated by conventional direct compression method for the sustained release of BICNU. These wafers were observed for their release profiles of BICNU and degradation rates by SEM, NMR, and GPC. Furthermore, we make multi-layer wafers and compare them with release profiles of conventional wafer. From these results, drug release of BICNU-loaded PLGA wafers was increased with increasing the glycolid monomer contents. We confirmed that glycolide monomer and BICNU contents in barrier-layer influenced the drug release profiles and degradation rate.

Poly(DL-Lactide-co-Glycolide) Nanoparticles Used PEG-PPG Diblock Copolymer by Surfactant: Preparation and Loading of Water Insoluble Drug (유화제로서 PEG-PPG 블록 공중합체를 이용한 Poly(DL-Lactide-co-Glycolide) 나노입자: 제조 및 지용성 약물의 로딩)

  • Taek Kyu Jung;Sung Soo Kim;Byung Cheol Shin
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.479-486
    • /
    • 2003
  • In this study, poly(DL-lactide-co-glycolide) nanoparticles loaded with water-insoluble vitamins such as vitamin A (Retinol) and vitamin E acetate were prepared by the emulsification diffusion method. Polymer solution was prepared by the two water-miscible organic solvent, such as ethanol and acetone. Because of its biocompatible property, polyethyleneglycol-polypropyleneglycol diblock copolymer was used as surfactant and stabilizer. The influence of some preparative variables on the nanoparticle formation and on the loading efficiency of active agents, such as the type and concentration of stabilizing agent, the stirring methods, the water/oil phase ratio and the polymer concentration were investigated in order to control and optimize the process. After preparation of nanoparticles loaded with active agent, particle size and distribution were evaluated by the light scattering particle analyzer. The loading efficiency of active agents was evaluated by the UV-visible spectroscopy. As the results, particle size were 50-200 nm and dispersibility was monodisperse. The optimum loading efficiency of active agents was observed 50-60%. It was found that the appropriate of selections of binary solvent mixtures and polymeric concentrations in both organic and aqueous phases could provide good yield and favorable physical properties of PLGA nanoparticles.

Surface Mmodification of Poly(DL-lactide-co-glycolide) Nanoparticle (Poly(DL-lactide-co-glycolide) 나노입자의 표면 수식)

  • Oh, Yu-Mi;Jung, Taek-Kyu;Chi, Sang-Cheol;Shin, Byung-Cheol
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.601-607
    • /
    • 2003
  • We studied on preparation of nanoparticles modified surface using biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). Two kinds of PLGA nanoparticles were prepared by a spontaneous emulsification solvent diffusion (SESD) method using cetyltrimethylammonium chloride (CTAC) and tetradecyltrimethylammonium bromide (TTAB) as a cationic surfactant and polyethylene glycol-block-polypropylene glycol copolymer (Lutrol F68) as a nonionic surfactant. Model protein was coated on the surface of nanoparticles by the ionic complexation. The model protein was that influenza vaccine ($H_3N_2,\;H_1N_1$, B strain) labeled with NHS-fluorescein. The sizes of cationic nanoparticles were 140-160 nm and the surface charges were 50-60 mV. The sizes of nonionic nanoprticles were 80-90 nm and the surface charge was -10 mV. After coating vaccine on the surface of nanoparticles, the sizes of cationic nanoparticles were increased to 380-400 nm and the size of nonionic nanoparticles was not increased. The amount of coated vaccine on the cationic nanoparticles was 22.73 ${\mu}g$/mg.

Evaluation of In Vitro Release Profiles of Fentanyl-Loaded PLGA Oligomer Microspheres

  • Gilson Khang;Seo, Sun-Ah;Park, Hak-Soo;John M. Rhee;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • v.10 no.5
    • /
    • pp.246-252
    • /
    • 2002
  • In order to the development of the delivery device of long-acting local anesthetics for postoperative analgesia and control of chronic pain of cancer patient, fentnyl-loaded poly (L-lactide-co-glycolido) (PLGA, molecular weight, 5,000 g/mole; 50 : 50 mole ratio by lactide to glycolide) microspheres (FMS) were studied. FMS were prepared by an emulsion solvent-evaporation method. The influence of several preparation parameters such as initial drug loading, PLGA concentration, emulsifier concentration, oil phase volume, and fabrication temperature has been investigated on the fentanyl release profiles. Generally, the drug showed the biphasic release patterns, with an initial diffusion followed by a lag period before the onset of the degradation phase, but there was no lag time in our system. Fentanyl was slowly released from FMS over 10 days in vitro with a quasi-zero order property. The release rate increased with increasing drug loading as well as decreasing polymer concentration with relatively small initial burst effect. From the results, FMS may be a good formulation to deliver the anesthetic for the treatment of chronic pain.

Effect of Hydrophilic Polymers on the Release of BCNU from BCNU-loaded PLGA Wafer (친수성 고분자가 BCNU 함유 PLGA 웨이퍼로부터 BCNU의 방출에 미치는 효과)

  • 안태군;강희정;문대식;이진수;성하수
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.670-679
    • /
    • 2002
  • 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU, carmustine) is one of the effective chemotherapeutic agents which has been used clinically for treating malignant glioma. Poly(D,L-lactide-co-glycolide) (PLGA, molecular weight: 20000 g/mole. mole ratio of lactide to glycolide 75 : 15) is a well known biodegradable polymer used as a drug carrier for drug delivery system. In this study, we investigated the BCNU release behaviour of BCNU-loaded PLGA wafers containing poly (N-vinylpyrrolidone) (PVP) or polyethyleneoxide (PEO) and the effect of hydrophilic polymers incoporated in the wafers. BCNU-loaded PLGA microparticles with or without hydrophilic polymers were prepared by a spray drying method and fabricated into wafers by direct compression. Encapsulation efficiency of BCNU-loaded PLGA microparticles containing PVP and PEO was 85 ∼ 97% and crystallinity of BCNU encapsulated in PLGA decreased significantly initial release amount and release rate of BCNU increased with the increasing PVP or PEO amount. Morphological change and mass loss of wafers during the release test were confirmed that hydration and degradation of PLGA would be facilitated with an increase of hydrophilic polymers.

Preparation and In Vitro Release of DNA-Loaded Poly(D,L-lactic-co-glycolic acid) Microspheres (DNA가 봉입된 Poly(D,L-lactic-co-glycolic acid) 미립구의 제조 및 시험관내 방출)

  • Son, Hye-Jung;Kim, Jin-Seok
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.69-73
    • /
    • 2005
  • To overcome the main disadvantages of non-viral gene delivery systems such as repeated administration due to the low transfection efficiency, poly(D,L-lactide-co-glycolide) was applied to encapsulate pDNA in its microsphere formulation. Free pDNA or various ratios (w/w) of chitosan/pDNA complexes was used for encapsulation, with the resulting encapsulation efficiency of 44%, 5%, and 8% for free pDNA, 0.7:1 and 1:1 ratios, respectively. Scanning electron micrographs of poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres encapsulating pDNA or chitosan-condensed pDNA revealed a smooth spherical shape immediately after microsphere preparation and a collapsed porous shape in 41 days due to the degradation of PLGA. In vitro release profile showed that the 0.7:1 (w/w) ratio formulation exerted 47% release in 26 days, whereas free pDNA or 1:1 (w/w) ratio formulation did only 15% or 32%, respectively.

Preparation of BCNU-loaded PLGA Wafers and In Vitro Release Behavior (BCNU 함유 PLGA 웨이퍼의 제조와 생체외 방출거동)

  • 성하수;문대식;강길선;이정식;이해방
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.128-138
    • /
    • 2002
  • 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU, Carmustine)-loaded poly(D, L-lactide-co-glycolide) (PLGA, lactide/glycolide mole ratio 75 : 25) microparticles were prepared and fabricated into wafers in an attempt to study the possibility for the treatment of malignant glioma by direct inserting the wafers to the tumor or the cavity remained after surgical resection of the tumor. SEM observation of the microparticles prepared by spray drying method revealed that the microparticles were spherical, i. e. microspheres. Significant reduction of the crystallinity of BCNU encapsulated in PLGA was confirmed by X-ray diffraction and differential scanning calorimetry analyses of the BCNU-loaded PLGA microparticles. Release pattern of BCNU was dependent on several preparation parameters, such as the molecular weight and concentration of PLGA, and initial BCNU loading amount, etc. In vitro release of BCNU was prolonged over 8 weeks with close to zero-order release pattern after initial burst effect. Observations of morphological change of wafers and pH change of release media during release test period confirmed that hydration and degradation of PLGA would be facilitated with an increase of BCNU-loading amount.