Evaluation of In Vitro Release Profiles of Fentanyl-Loaded PLGA Oligomer Microspheres

  • Gilson Khang (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Seo, Sun-Ah (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Park, Hak-Soo (Department of Polymer Science and Technology, Chonbuk National University) ;
  • John M. Rhee (Department of Polymer Science and Technology, Chonbuk National University) ;
  • Lee, Hai-Bang (Biomaterials Laboratory, Korea Research Institute of Chemical Technology)
  • Published : 2002.10.01

Abstract

In order to the development of the delivery device of long-acting local anesthetics for postoperative analgesia and control of chronic pain of cancer patient, fentnyl-loaded poly (L-lactide-co-glycolido) (PLGA, molecular weight, 5,000 g/mole; 50 : 50 mole ratio by lactide to glycolide) microspheres (FMS) were studied. FMS were prepared by an emulsion solvent-evaporation method. The influence of several preparation parameters such as initial drug loading, PLGA concentration, emulsifier concentration, oil phase volume, and fabrication temperature has been investigated on the fentanyl release profiles. Generally, the drug showed the biphasic release patterns, with an initial diffusion followed by a lag period before the onset of the degradation phase, but there was no lag time in our system. Fentanyl was slowly released from FMS over 10 days in vitro with a quasi-zero order property. The release rate increased with increasing drug loading as well as decreasing polymer concentration with relatively small initial burst effect. From the results, FMS may be a good formulation to deliver the anesthetic for the treatment of chronic pain.

Keywords

References

  1. Disposition of Toxic Drugs and Chemicals in Man R. C. Baselt
  2. J. Anal. Toxicol. v.12 W. R. Hammargren;D. E. Longnecker https://doi.org/10.1093/jat/12.4.183
  3. General Anesthetics B. E. Marchall;D. E. Longnecker;A. G. Gilman;T. W. Rall;A. S. Nies;P. Taylor
  4. J. Anal. Toxical. v.8 J. C. Garriott;R. Rodriquez;V. J. M. Di Mario https://doi.org/10.1093/jat/8.6.288
  5. J. Anal. Toxicol. v.11 E. M. Pare;J. R. Monforte;R. Gaul;H. Mirchandani https://doi.org/10.1093/jat/11.6.272
  6. J. Anal. Toxicol. v.12 R. J. Matecjczyk https://doi.org/10.1093/jat/12.4.236
  7. Forensic Sci. Int. v.45 B. Levine;J. C. Goodin;Y. H. Caplan https://doi.org/10.1016/0379-0738(90)90181-W
  8. J. Chromatography B. v.765 H. S. Choi;H. C. Shin;G. Khang;J. M. Rhee;H. B. Lee https://doi.org/10.1016/S0378-4347(01)00405-4
  9. Int. J. Pharm. v.234 H. S. Choi;S.-A. Seo;G. Khang;J. M. Rhee;H. B. Lee https://doi.org/10.1016/S0378-5173(01)00968-1
  10. Int. J. Pharm. v.239 S.-A. Seo;H. S. Choi;G. Khang;J. M.;Rhee;H. B. Lee https://doi.org/10.1016/S0378-5173(02)00074-1
  11. Adv. Contracept. v.1 L. R. Beck;V. Z. Pope;T. R. Tice;R. M. Gilley
  12. Clarke's Isolation, Idenitication of Drugs in Pharmaceuticals, Body Fluids and Post-Mortem Materials A. C. Moffat
  13. J. Med. v.152 R. Ikeda;C. Pelton
  14. Polymer Preprints v.40 H. B. Lee;G. Khang;J. C. Cho;J. M. Rhee;J. S. Lee
  15. Polymer Sci Tech. v.12 G. Khang;J. M. Rhee;J. S. Lee;H. B. Lee
  16. Biomater. Res v.4 G. Khang;D. S. Moon;H. S. Seong;J. M. Rhee;J. S. Lee; H. B.Lee
  17. Korea Polym. J. v.7 J. C. Cho;G. Khang;J. M. Rhee;Y. S. Kim;J. S. Lee;H. B. Lee
  18. Bio-Med. Mater.Eng. v.9 G. Khang;J. C. Cho;J. W. Lee;J. M . Rhee;H. B. Lee
  19. Korea Polym. J. v.8 G. Khang;J. H. Lee;J. W. Lee; J. C. Cho;H. B. Lee
  20. Polymer (Korea) v.24 J. C. Cho;G. Khang;H. S. Choi;J. M. Rhee;S. C. Yoon;J. C. Cho;H. B. Lee
  21. Korea Polym. J. v.8 G. Khang;H. S. Choi;J. M. Rhee;S. C. Yoon;J. C. Cho;H. B. Lee
  22. Biomater.Res. v.4 W.-I. Son;D. I. Yun;G. Khang;B.-S. Kim;H. B. Lee
  23. Biomater. Res. v.4 J. C. Cho;G. Khang;J. M.Rhee;Y. S. Kim;J. S. Lee;H. B. Lee
  24. Bio-Med. Mater. Eng. v.1 G. Khang;S. W. Kim;J. C. Cho;J. M. Rhee;S. C. Yoon;H. B. Lee
  25. Polymer (Korea) v.25 M. K. Choi;G. Khang;I. Lee;J. M. Rhee;H. B. Lee
  26. Polymer (Korea) v.25 S.-A. Seo;H. S. Choi;D. G. Lee;G. Khang;J. M. Rhee;H. B. Lee
  27. Biomater. Res. v.5 S.-A. Seo;H. S. Choi;J. C. Cho;G. Khang;J. M. Rhee;H. B. Lee
  28. J. Biomater. Sci. Polym. Ed. v.13 S. J. Lee;G. Khang;Y. M. Lee;H. B. Lee https://doi.org/10.1163/156856202317414375
  29. Cell-synthetic Surface Interaction: Physicochemical Surface Modification v.Ⅱ G. Khang;H. B. Lee;A. Atala;R. Lanza
  30. Biomedical Polymer G. Khang;H. B. Lee
  31. Controlled Release of Bioactive Agents from Lactide/Glycolide Polymers, Biodegradable Polymers as Drug Delivery Systems D. H. Lewis;M. Chasin;R. Langer
  32. J. Bioact. Compatible Polym. v.5 R. Arshady https://doi.org/10.1177/088391159000500308
  33. J. Microencapsul. v.7 R. Jalil;J. R. Nixon https://doi.org/10.3109/02652049009021842
  34. J. Microencapsul. v.7 R. Jalil;J. R. Nixon https://doi.org/10.3109/02652049009028423
  35. Biomaterials v.22 Y.-Y. Yang;T.-S. Chung;N. P. Ng https://doi.org/10.1016/S0142-9612(00)00178-2
  36. Int. J. Pharm. v.89 C. Sturesson;J. Carlfores;K. Edman;M. Andersson https://doi.org/10.1016/0378-5173(93)90249-F
  37. Int. J. Pharm v.175 M. Guyot;F. Fawaz https://doi.org/10.1016/S0378-5173(98)00253-1
  38. J. Microencapsul. v.7 R. Jalil;J. R. Nixon https://doi.org/10.3109/02652049009021837
  39. J. Microencapsul. v.7 R. Jalil;J. R. Nixon https://doi.org/10.3109/02652049009028422
  40. J. Pharm. Pharmacol. v.43 F. Wada;S. Hyon;T. Ikada https://doi.org/10.1111/j.2042-7158.1991.tb03547.x
  41. Int. J. Pharm v.141 G. Raouf;S. Cecilia;lC. Johan https://doi.org/10.1016/0378-5173(96)04639-X