• 제목/요약/키워드: policy unit

Search Result 955, Processing Time 0.025 seconds

Replacement Model after Extended Two-phase Warranty (연장된 이단계 보증 이후의 교체모형)

  • Jung, Ki Mun
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.197-204
    • /
    • 2021
  • Under the two-phase warranty, the warranty period is divided into two intervals, one of which is for renewing replacement warranty, and the other is for minimal repair warranty. Jung[13] discusses the two types of extended two-phase warranty models. In this paper, we suggest the replacement model after the extended two-phase warranty that has been proposed by Jung[13]. To determine the optimal replacement policy, we adopt the expected cost rate per unit time. So, the expressions for the total expected cost, the expected length of the cycle and the expected cost rate per unit time from the user's point of view are derived. Also, we discuss the optimal replacement policy and the uniqueness of the solution for the optimization. Furthermore, the numerical examples are provided to illustrate the proposed the replacement model.

Analysis of a Controllable M/G/1 Queueing Model Operating under the (TN) Policy ((TN) 운용방침이 적용되는 조정가능한 M/G/1 대기모형 분석)

  • Rhee, Hahn-Kyou
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.96-103
    • /
    • 2014
  • A steady-state controllable M/G/1 queueing model operating under the (TN) policy is considered where the (TN) policy is defined as the next busy period will be initiated either after T time units elapsed from the end of the previous busy period if at least one customer arrives at the system during that time period, or the time instant when Nth customer arrives at the system after T time units elapsed without customers' arrivals during that time period. After deriving the necessary system characteristics such as the expected number of customers in the system, the expected length of busy period and so on, the total expected cost function per unit time in the system operation is constructed to determine the optimal operating policy. To do so, the cost elements associated with such system characteristics including the customers' waiting cost in the system and the server's removal and activating cost are defined. Then, the optimal values of the decision variables included in the operating policies are determined by minimizing the total expected cost function per unit time to operate the system under consideration.

A Production and Preventive Maintenance Policy with Two Types of Failures (두 가지 고장형태를 고려한 생산 및 예방보전 정책)

  • 김호균;조형수
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.3
    • /
    • pp.53-65
    • /
    • 2002
  • This paper studies an economic manufacturing quantity (EMQ) model with two types of failures and planned preventive maintenance of the production facility. One is a type I (major) failure which should be corrected by a failure maintenance and the other is a type H (minor) failure which can be minimally repaired without interrupting the production run. The objective is to determine the lot size and preventive replacement policy minimizing the long-run expected cost per unit time. We consider a control policy with a constant production lot size and preventive maintenance after completing n production runs. It is assumed that both preventive and failure maintenance times are random and the demand arriving during a stock-out period is lost. An expression for the expected cost per unit time is obtained in the general case. A special case is discussed and numerical results are provided.

On Optimal Replacement Policy for a Generalized Model (일반화된 모델에 대한 최적 교체정책에 관한 연구)

  • Ji Hwan Cha
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.3
    • /
    • pp.185-192
    • /
    • 2003
  • In this paper, the properties on the optimal replacement policies for the general failure model are developed. In the general failure model, two types of system failures may occur : one is Type I failure (minor failure) which can be removed by a minimal repair and the other, Type II failure (catastrophic failure) which can be removed only by complete repair. It is assumed that, when the unit fails, Type I failure occurs with probability 1-p and Type II failure occurs with probability p, $0\leqp\leq1$. Under the model, the system is minimally repaired for each Type I failure, and it is repaired completely at the time of the Type II failure or at its age T, whichever occurs first. We further assume that the repair times are non-negligible. It is assumed that the minimal repair times in a renewal cycle consist of a strictly increasing geometric process. Under this model, we study the properties on the optimal replacement policy minimizing the long-run average cost per unit time.

Analysis on G/M/1 queue with two-stage service policy

  • KIM SUNGGON;KIM JONGWOO;LEE EUI YONG
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.295-300
    • /
    • 2004
  • We consider a G/M/1 queue with two-stage service policy. The server starts to serve with rate of ${\mu}1$ customers per unit time until the number of customers in the system reaches A. At this moment, the service rate is changed to that of ${\mu}2$ customers per unit time and this rate continues until the system is empty. We obtain the stationary distribution of the number of customers in the system.

  • PDF

Maintenance Policies Following the Expiration of Two-Dimensional Free Replacement Warranty (2차원 무료 보증이 종료된 이후의 보전정책)

  • Kim, Ho-Gyun
    • Journal of Applied Reliability
    • /
    • v.15 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • Maintenance plays an important role in keeping product availability, reliability and quality at an appropriate level. In this paper, two-types of maintenance policies are studied following the expiration of two-dimensional (2D) free replacement warranty. Both the fixed-maintenance-period policy and the variable-maintenance-period policy are based on a specified region of the warranty defined in terms of age and usage where all failures are minimally repaired. An accelerating failure time (AFT) model is used to allow for the effect of usage rate on product degradation. The maintenance model that arises following the expiration of 2D warranty is discussed. The expected cost rates per unit time from the user's point of view are formulated and the optimal maintenance policies are determined to minimize the expected cost rate to the user. Finally numerical examples are given to illustrate the optimal maintenance polices.

A Study on Optimal Preventive Maintenance Policy When Failure Rate is Exponentially Increasing After Repair (수리 후 고장률이 지수적으로 증가하는 경우에 최적 예방보전 정책)

  • Kim, Tae-Hui;Na, Myung-Hwan
    • Journal of Applied Reliability
    • /
    • v.11 no.2
    • /
    • pp.167-176
    • /
    • 2011
  • This paper introduces models for preventive maintenance policies and considers periodic preventive maintenance policy with minimal repair when the failure of system occurs. It is assumed that minimal repairs do not change the failure rate of the system. The failure rate under prevention maintenance received an effect by a previously prevention maintenance and the slope of failure rate increases the model where it considered. Also the start point of failure rate under prevention maintenance considers the degradation of system and that it increases quotient, it assumed. Per unit time it bought an expectation cost from under this prevention maintenance policy. We obtain the optimal periodic time and the number for the periodic preventive maintenance by using Nakagawa's Algorithm, which minimizes the expected cost per unit time.

Cost Analysis of a Stepdown Warranty Policy

  • Kim, Won Joong;Yi, Keun Heui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.15
    • /
    • pp.23-32
    • /
    • 1987
  • This paper proposes a stepdown warranty policy: the warranty period consists of subintervals where the manufacturer's compensation is constant for warranty failures and decreases with the subinterval's number. Manufacturer's unit warranty cost is analyzed for both irrepairable and repairable products. we assume that only minimal repairs are performed for repairable items. Comparison with the free replacement polity indicates that the proposed policy has a longer warranty period if tile warranty reserves are the same and that manufacturer`s unit warranty cost is smaller if the warranty periods are tile same. Some numerical examples are also given.

  • PDF

A Study on the Import-Export Modeling and GIS Analysis of the International Provisions for the Agricultural Policy Decision Support (농업정책결정지원을 위한 국가간 식량 수급 모델링 및 GIS 분석에 관한 연구)

  • 김대식;이상무
    • Journal of Korean Society of Rural Planning
    • /
    • v.4 no.2
    • /
    • pp.117-127
    • /
    • 1998
  • In this study, a model was developed to analyze the capacity and the total price of the agricultural products marketing between nations through the estimation of the production and consumption amount of the agricultural products in each nation and the analysis of the price and transport cost to each nation. The method which can contribute to the agricultural policy decision support was devised. The main concept of the method is to compute the potential import-export amount and total cost among the nations. In the application, wheat was selected to evaluate the model. The application results showed that the model could analyzed the unit consumption and storage amount per capital of each nation and the price and transport cost per unit weight from each export nation, provided the policy decision maker with the basic data analyzed by GIS.

  • PDF

Optimal Number of Failures before Group Replacement under Minimal Repair

  • Young Kwan, Yoo
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • In this paper, a group replacement policy based on a failure count is analysed. For a group of identical repairable units, a maintenance policy is performed with two phase considerations: a repair interval phase and a waiting interval phase. Each unit undergoes minimal repair at failure during the repair interval. Beyond the interval, no repair is made until a number of failures. The expected cost rate expressions under the policy is derived. A method to obtain the optimal values of decision variables are explored. Numerical examples are given to demonstrate the results.