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ABSTRACT

We consider a G/M/1 queue with two-stage service policy. The server starts
to serve with rate of p; customers per unit time until the number of customers
in the system reaches A. At this moment, the service rate is changed to that of
u2 customers per unit time and this rate continues until the system is empty. We
obtain the stationary distribution of the number of customers in the system.
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1. INTRODUCTION

In this paper, a G/M/1 queue is considered. We adopt two-stage service policy.
The customers arrive according to a renewal process with inter arrival times following
distribution function A of mean a. The server is initially idle. On an arrival of a
customer, the server starts to serve p; customers per unit time. Note that the service
times are exponentially distributed. If the number of customers reaches A, then the
server immediately changes his service rate to uo customers per unit time and finishes the
current busy period, otherwise he finishes the busy period with service rate u;. The same
service policy is applied to the forthcoming customers. We assume that max(u1, pg) <
1/a for the stability of the queue.

Kim [3] analysed the M/M/1 queue with the two-stage service policy and obtained
the stationary distribution of the number of customers in system. Bae et al. [2] showed
that there is an optimal service rate. In case u; = 0, the two-stage service policy become
to be the N-policy, which was introduced by Yadin and Naor [6]. Recently, Zhang and
Tian [7] obtained the stationary number of customers in a G/M/1 queueing system with
the N-policy.

It is obtained in this paper the stationary distribution of the number of customers in
the system. We, first, decompose the process of number of customers into two processes
according to the service rate and obtain the stationary distribution of each process by
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Figure 2.1: A sample path of queue length process {X (¢), t > 0}

making use of an embedded Markov chain and the technique of level-crossing. We com-
bine these two stationary distributions to obtain the stationary distribution of the original

process.

2. MAIN RESULT

Let {X(t),t > 0} be the process of the number of customers in the system. A sample
path of {X(t),t > 0} is illustrated in Figure 1. To obtain the stationary distribution
of {X(¢),t > 0}, we decompose {X(t),t > 0} into two processes. First, the initial idle
period is ignored. The system is called in stage 1 as long as the service rate is kept p; and
is called in stage 2 while the service rate is py. The idle period after stage 2 is assumed
to be still in stage 2. Meanwhile, the idle periods in the middle of stage 1 is assumed
to be in stage 1. {Xi(t),t > 0} is formed by separating the periods in stage 1 from
{X(),t > 0} and connecting them together. The rests of {X(t),t > 0} are connected to
form {X2(t),t > 0}.

2.1. Analysis of {X1(t),¢t > 0}

LetY,,n =1,2,..., be the number of customers in the system seen by the n-th arrival
in {X1(¢),t > 0}. Then, {Y,,n > 1} is an aperiodic and irreducible Markov chain with
state space {0,1,2,...,A — 1} and the following transition matrix;

To qo 0 0
1 a9 0
Pl = : )
Ta-2 Gx—-2 Qx-3 do0
T qo 0 0
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where

o —puyt tk
qk=/ e——k("“—)dA(t), k=0,1,2,...,
0 .

and rn = 1 — Y p_,qk. Observe that the last low in Py is the same as the first low.
This is due to that {X;(t),t > 0} becomes 1 immediately after an arrival seeing A — 1

customers.
Since {Y,,n > 1} is an irreducible Markov chain with finite state space, it is ergodic.
The stationary distribution (1) = (w(()l),7r§1), e ,wf\l_)l is given by
@ _ Din
ﬂ'i ==
E j=1 DJ'

In the above equation, D; is the determinant of the matrix obtained by striking out the
i-th row and the i-th column of I*) — Py and IY is the A-dimensional identity matrix.
See Barlow and Proschan ([1], p129).

The process {X(t),t > 0} is a regenerative process, where the regeneration points
are the epochs of arrival seeing A — 1 customers in the system. The following theorem
gives the expectation of 71, a cycle length between two regeneration points.

THEOREM 2.1. Let mg;), 1,7=0,1,2,..., A~ 1, be the expected time from an arrival
seeing i customers to the next arrival seeing j customers in {X1(t), t = 0}. Then,
6] a
it 71'(1)

i
Thus, the ezpectation of Ty is given by E{T] = a/7r§\1_)1

The expectation of 7 is finite. Hence, {X;(¢),t > 0} has a stationary distribution
(1) — (1) (1) (1)
p —(po )pl ,"')p)\—l)'
Since the service times of customers are independent and exponentially distributed, by

PASTA, the probability that a departure leaves j — 1 customers in the system is p§1) , for
j =1,2,.... This implies that the average number of departures leaving j — 1 customers
in a unit time is ,ulpj(.l). Moreover, notice that there is only 1 customer in the system
immediately after the arrival seeing A — 1 customers and that the rate of occurrence of

this event is wril_)l, where v = 1/a. Thus, we can see that for j =2,3,..., A -1,

1
down-crossing rate to level <j - 5) = Mp§.1) + wrf\l_)l, (2.1)
and )
down-crossing rate to level 3= ,U/lp(11)- (2.2)
We can also obtain the up-crossing rates from the definition of wj(.l) 's. Forj=1,2,...,A -1,
: . &
up-crossing rate to level [ j — 3) =vmia (2.3)
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Since the process {X;(t),t > 0} has a stationary distribution, the up-crossing rate to
a level (j — 1/2) should be equal to the down-crossing rate to the same level, for j =
1,2,...,A — 1. By equating these rates in egs. (2.1), (2.2), and (2.3), we can derive that

o = pinl?,

p§1) = pu(rV, —r), i=2,.,A-1,

where p; = v/py. Using the identity that Z;‘;& pg-l) = 1, we obtain that

pél) =1-p+p1(A— l)ﬂf\l_zl.

2.2. Analysis of {X2(t),t > 0}

Let Z,,n = 1,2,..., be the number of customers in the system seen by the n-th
arriving customer in {X,(¢),¢t > 0}. Then, {Z,,n > 1} is an aperiodic and irreducible
Markov chain and its state space is the set of all non-negative integers. We define ¢, as

X ,—pat k
q;c=/0 %‘ﬁ)—(m(t), k=0,1,2,...,

and let 7, = 1 — 3} _,q). Then, the transition matrix of {Z,,n > 1} is given by

follows:

! ' / A
Ta—1 da—1 -2 -3
! ' /
™ q1 q0 0

Py = 4 a4 q S

Note that the first low is the same as the A-th low in P,. This is due to that {X3(¢),¢ > 0}
becomes A immediately after an arrival seeing the system empty. Using the Pakes's
lemma [4], we can obtain the following theorem:

THEOREM 2.2. The Markov chain {Z,,n > 1} is ergodic.

By the above theorem, the stationary distribution (2 = {11'(()2),7r§2),7r£2) ...} of the
Markov chain {Z,,n > 1} exists. To obtain an explicit form of wfz)’s, we need the

following lemma and theorem.

LEMMA 2.1. Let Pz(") be the submatriz of P, having the same first n rows and n
columns as Py and let I™ is the n-dimensional identity matriz. Then, MO+ = JO+1)
pAFY o .

2 is invertible.
THEOREM 2.3. Let a be the unique solution of z = Y po  qxz* and let b be a (A+1)-

dimensional vector such that
b= en [M()\+1)]_1,
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where = (1 — &){ra-1 — 70,qr~1 — G0, Qr=2, - - -, Qo), ¢ = 1/(1 + q[MP*+V]=11") and
1’ is the transpose of (A + 1)-dimensional vector (1,1,...,1). Then, the explicit form of
w2 is given by

@ _ {bj+c(1—a)aj, 0<j<A
o= c(1 - a)ad, j> A+ 1

The process {Xa(t),t > 0} is a regenerative process, where the regeneration points
are the epochs of arrival seeing the system empty. Let mE?), 4,7 = 0,1,2,..., be the
expected time from an arrival seeing i customers to the next arrival seeing j customers
in {X5(¢), t > 0}. Then, by the similar argument to obtain Theorem 2.1, we can obtain

that
a

If we let T be the length of a cycle of {X3(t), t > 0}, then the expectation of T, is given
by mé)%). Thus,

E[D)] = —5-
To

Since {X2(t),t > 0} is a regenerative process with finite expected cycle length, the process
has a stationary distribution p(?) = (p((f),pgz),pg?) ).
By the same reason as was mentioned in the previous subsection, the average number

of departures leaving j — 1 customers in a unit time is uzp(-2). That is, for j =1,2,3,...
. 1 (2)
down-crossing rate to level | j — 5 ) = Hep; - (2.4)

By definition, the probability that an arriving customer sees j—1 customers in the system
(2)

iU
system empty. Hence, the up-crossing rates are given as follows:

ismw Moreover, there are A customers in the system just after the arrival seeing the

1 1/71'0 y ] = 1,
up-crossing rate to level (j - 5) = u(qr](2_>1 + wé2)), 2<i<A, (2.5)
1/7r](-2_)1, j>A+1.

By equating the up- and down-crossing rates in egs. (2.4) and (2.5), we have that
(2

P27 ] = 17
2 .
Y = e+ m), 255 (26)
o, JZA+1

From the identity that Z;‘;o p§2) = 1, we can derive that

p =1-py = pa(A = 1)m§?.
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2.3. Stationary distribution of {X (t),t > 0}

We are now ready to obtain the stationary distribution of {X(¢),t > 0}, p =
(po,p1,P2,-..), where p; = limy, Pr{X(¢t) = i}. Note that the epochs where the
number of customers reaches A after the system being empty form a sequence of regener-
ation points in {X (¢),t > 0}. The length of a cycle between two successive regeneration
points is T = T3 + T5. We now assume that a reward at rate of one is given per unit time
while {X(¢),t > 0}, {X1(t),t > 0}, and {Xo(t),t > 0} stay at state ¢, i =0,1,2,.... By
applying the renewal reward theorem(Ross [5, p.133]) repeatedly, we have that

Efreward during a cycleT']

bi = ET]
Ereward during a cycleT}| + E[reward during a cycleT]
B B(T]
_ E[Th] E[reward during a cycleT1] = E[T;] Elreward during a cycleT]
BT E[T] E[T] E[Ty]
E[T] (1) E[T] @)

EM]+ BT " " BT+ ED)

where pgl) = 0 for ¢ larger than A — 1.
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