• Title/Summary/Keyword: plasticizer

Search Result 403, Processing Time 0.026 seconds

Fabrication of FET-Type $Ca^{2+}$ Sensor by Photolithographic Method and Its Characteristics (Photolithography에 의한 FET형 $Ca^{2+}$ 센서의 제작 및 특성)

  • Park, Lee-Soon;Hur, Young-Jun;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.15-22
    • /
    • 1996
  • FET type $Ca^{2+}$ sensor(Ca-ISFET) was fabricated by micropool and photolithographic method utilizing photosensitive polymer as membrane materials. When OMR-83 negative photoresist was used as membrane material, it gave good sensitivity by micropool method with dioctyladipate as plasticizer but it could not be used in the photolithographic method. When poly(viny1 butyral), PVB was used as membrane material, it gave relatively high sensitivity ($23{\pm}0.2\;mV/decade$) for $Ca^{2+}$ concentration range of $10^{-4}{\sim}10^{-1}\;mole/{\ell}$ by photolithographic method. PVB also provided good adhesion to the pH-ISFET base device without adhesion promoter pretreatment and any plasticizer.

  • PDF

Synthesis and Characterization of Insensitive Energetic Plasticizer (둔감 에너지 가소제 합성 및 특성 분석)

  • Lee, Woonghee;Kim, Minjun;Park, Youngchul;Lee, Bumjae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.11-17
    • /
    • 2016
  • BTTN and TMETN are representative energetic plasticizers used for various propellants. However these compounds are sensitive relatively. So, in order to develop insensitive energetic plasticizer, this study attempted to synthesize derivative of triazole, 4,5-bis(azidomethyl)-(2-methoxyethyl)-1,2,3- triazole (DAMETR). Also, the prepared compound was characterized by NMR, IR spectroscopy, and physicochemical properties such as glass transition temperature, melting point, decomposition temperature, density, viscosity and impact sensitivity. In addition, the heats of formation (${\Delta}H_f$) and detonation properties (pressure and velocity) of DAMETR were calculated using Gaussian 09 and EXPLO5 programs. Especially, 1-DAMETR(>50 J) was more insensitive than BTTN(1 J) and TMETN(9.2 J).

The Conductivity Properties of Poly(ethylene oxide) Polymer Electrolyte as a Function of Temperature, Kinds of Lithium Salt and Plasticizer Addition (Poly(ethylene oxide) 고분자 전해질의 온도, Li 염의 종류 및 가소제 첨가에 따른 전도도 특성)

  • Kim, J.U.;Jin, B.S.;Moon, S.I.;Gu, H.B.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1229-1232
    • /
    • 1994
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. This paper describes the effects of lithium salts, plasticizer addition and temperature dependence of conductivity of PEO electrolytes. Polyethylene oxide(PEO) based polymer electrolyte films were prepared by solution casting an acetonitrile solution of preweighed PEO and Li salt. After solvent evaporation, the electrolyte films were vacuum-dried at $60^{\circ}C$ for 48h, the thickness of the films were $90{\sim}110{\mu}m$. The conductivity properties of prepared PEO electrolytes are summarized as follows. PEO electrolyte complexed with $LiClO_4$ shows the better conductivity of the others. $PEO-LiClO_4$ electrolyte when $EO/Li^+$ ratio is 8, showed the best conductivity. Optimum operating temperature of PEO electrolyte is $60^{\circ}C$. By adding propylene carbonate and ethylene carbonate to $PEO-LiClO_4$ electrolyte, its conductivity was higher than $PEO-LiClO_4$ without those. Also $PEO_8LiClO_4$ electrolyte remains static up to 4.5V vs. $Li/Li^+$.

  • PDF

Effect of Water Resistance and Physical Properties of Soy Protein Isolate coated Liner Board (대두단백 코팅 종이의 수분저항성 및 물리적 성질)

  • Ha, Sang-Hyung;Park, Cheon-Seok;Kim, Byung-Yong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.9
    • /
    • pp.1251-1255
    • /
    • 2006
  • To improve the water resistance and physical properties of soy protein isolate (SPI)-coated paper, effects of concentrations of soy protein isolate and plasticizer were examined. Physical properties such as elongation strength (ES), elongation rate (E), water vapor permeability (WVP), and water solubility (WS) were evaluated. The film made from 5% soy protein isolate (SPI) and 40% glycerol (plasticizer) suggested a good application for a film preparation. SPI coated paper showed the highest ES (21.62 MPa) and the lowest WVP $(2.06ng{\cdot}m/m^2{\cdot}s{\cdot}Pa)$ and WS (1.17%). This study suggested that soy protein isolate (SPI) can be used as a coating material for the coated paper to improve the water resistance.

Improvement of Physical Properties for Edible Films from Alaska Pollack Protein (명태 단백질로 제조한 가식성 필름의 물성 개선)

  • Mok Jong Soo;Song Ki Cheol;Kang Chang Su;Chang Soo Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.417-423
    • /
    • 2002
  • The edible films were prepared from the protein of alaska pollack, Theragra chalcogrmma. Effects of plasticizer, cross linker and laminated film on physical properties such as tensile strength (TS), elongation (E) and water vapor permeability (WVP) of films were investigated. In adding various kinds of plasticizers, TS of the films prepared with propylene glycol (PG) was the highest, and followed sorbitol, polyethylene glycol 200 (PEG 200) and glycerol. Elongation of the films prepared with glycerol was the highest, then sorbitol, PEG 200 and PG. WVP of films showed lower in order of PG, sorbitol, glycerol and PEG 200.75 decreased with the increment of plasticizer concentration, but elongation increased, The addition of both PG and PEG 200 effected weakly on elongation, so they were inadequate as plasticizer for the film. Mixtures of glycerol and sorbitol, which showed opposing both TS and elongation in the films, could control the physical properties of the films. With increasing relative humidity, TS decreased, while elongation and equilibrium moisture content increased. By adding the cross linkers such as ascorbic acid, citric acid and succinic acid, TS and m of films increased, while elongation decreased. Ascorbic acid, citric acid, succinic acid were most effective for TS at 0.2, 0.1 and $0.1\%, respectively. Laminated film with alaska pollack protein and corn zein improved TS above two times, reduced WVP about $20\~30\%$, as compared with the Elm from alaska pollack protein. Two films did not show the difference to oxygen permeability, but they showed about tenfold greater oxygen resistance than polyethylene film. Laminated film showed higher b and $\Delta$E value of color difference, lower a and L value than the film from alaska pollack protein.

Discriminant Analysis of Marketed Liquor by a Multi-channel Taste Evaluation System

  • Kim, Nam-Soo
    • Food Science and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.554-557
    • /
    • 2005
  • As a device for taste sensation, an 8-channel taste evaluation system was prepared and applied for discriminant analysis of marketed liquor. The biomimetic polymer membranes for the system were prepared through a casting procedure by employing polyvinyl chloride, bis (2-ethylhexyl)sebacate as plasticizer and electroactive materials such as valinomycin in the ratio of 33:66:1, and were separately attached over the sensitive area of ion-selective electrodes to construct the corresponding taste sensor array. The sensor array in conjunction with a double junction reference electrode was connected to a high-input impedance amplifier and the amplified sensor signals were interfaced to a personal computer via an A/D converter. When the signal data from the sensor array for 3 groups of marketed liquor like Maesilju, Soju and beer were analyzed by principal component analysis after normalization, it was observed that the 1st, 2nd and 3rd principal component were responsible for most of the total data variance, and the analyzed liquor samples were discriminated well in 2 dimensional principal component planes composed of the 1st-2nd and the 1st-3rd principal component.

Processing and Microstructure of Alumina Coated with $Al_2O_3$/SiC Nanocomposite

  • Ha, Jung-Soo;Kim, C-S.;D-S. Cheong
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.19-22
    • /
    • 1997
  • The surface modificaion of alumina by $Al_2$O$_3$/SiC nanocomposite coating was studied in terms of processing and microstructure. A powder slurry of 5 vol% SiC composition was dipcoated onto presintered alumina bodies and pressurelessly sintered at 1$700^{\circ}C$ for 2 h in $N_2$. The used of organic binder and plasticizer in the slurry preparation, and the control of the density of presintered alumina body were found to be necessary to avoid cracking and warping during processing. The nanocomposite coating well bonded to the alumina body with thickness about 110 ${\mu}{\textrm}{m}$. The average grain size of coating (2 ${\mu}{\textrm}{m}$) was much finer than that of alumina body (13 ${\mu}{\textrm}{m}$). Fracture surface observations revealed mostly transgranular fracture for the coating, whereas intergranular fracture for the alumina body. Some pores (about 6%) were observed in the coating layer, although the alumina body showed fully dense microstructure.

  • PDF

Strength Characteristics of Concrete Using Superplasticizer content of Waste Concrete Powder (폐콘크리트 미분말을 활용한 콘크리트의 감수제 함유량에 따른 강도특성(PNS계 혼화제))

  • Park, Shin-Woo;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.103-104
    • /
    • 2015
  • This study is an experiment about what affects the compressive strength by using a reducing agent (PNS based admixtures) to play cement using the cement paste based Waste Concrete Powder of waste concrete, which accounts for more than 60% of construction waste around the latest domestic and international It was. Securing the replacement of cement with Waste Concrete Powder and, by varying the admixture was to compensate for the low absorption of liquidity and obtain a fine powder. And the experiment was conducted with a constant water cement ratio and aggregate usage for the purpose of lowering the water cement ratio promoting strength development. When substituted with the experimental results of 0.3% based on 3 ~ 28 days as strength 36Mpa exhibited the highest strength.

  • PDF

Mechanical Properties of Alumina-Glass Dental Composites Prepared from Aqueous-Based Tape Casting (수계공정에 의한 알루미나 테이프로 제조한 세라믹 인공치관용 알루미나 유리 복합체의 기계적 물성)

  • 이명현;김대준;이득용;이정훈;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1123-1131
    • /
    • 1999
  • Alumina-glass composites which are considered as the material of the choice for all dental crown was prepared by aqeous-based tape casting and sintering for 2h at 1120$^{\circ}C$ followed by glass infiltration for 2h at 1100$^{\circ}C$ Biaxial strength and fracture toughness of the composites were evaluated to determine the optimum composition of the tape as a function of the amount of constituent such as alumina binder and plasticizer. The strength and the fracture toughness of the alumina tape increased with increasing the contents of alumina and binder. These observations are consistent with in fluence of the constituents on mean alumuna particle distance in tapes suggesting that high strength of the glass infiltrated alumina composites is related to toughening by crack bowing. The biaxial strength and the fracture toughness of the composite containing the optimum constituent composition were 523 MPa and 3.3 MPa$.$1/2 respectively.

  • PDF

Effect of Preparation Methods of a Matrix Retaining Electrolyte on the Characteristics of a Phosphoric Acid Fuel Cell (인산형 연료전지(PAFC)용 전해질 매트릭스의 제조방법이 전극/매트릭스 계면특성에 미치는 영향)

  • 윤기현;최재열;장재혁;김창수
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1205-1212
    • /
    • 1997
  • The matrices which consisted of SiC whisker, PES(polyesterasulfone) as a binder, span 80(sorbitan monooleate) as a surfactant, TPP(triphenyl phosphate) as a plasticizer and dichloromethane as a solvent, have been prepared by the various methods such as tape casting, rolling, tape cast-coating and roll-coating method. The fuel cells of single stack type using these matrices are characterized by ac impedance spectroscopy and cyclic voltammetry technique. A fuel cell using a matrix prepared by the tape cast-coating method shows the best performance of 466.34 mA/$\textrm{cm}^2$ at 0.6V because it has the lowest polarization resistance at the interface between electrodes and a matrix due to the largest three phase contact region of gases, catalyst and electrolyte.

  • PDF