DOI QR코드

DOI QR Code

Improvement of Physical Properties for Edible Films from Alaska Pollack Protein

명태 단백질로 제조한 가식성 필름의 물성 개선

  • Mok Jong Soo (West Sea Fisheries Research Institute, National Fisheries Research & Development Institute) ;
  • Song Ki Cheol (West Sea Fisheries Research Institute, National Fisheries Research & Development Institute) ;
  • Kang Chang Su (Department of Baking Technology, Hyejeon College) ;
  • Chang Soo Hyun (Faculty of Ocean Applied Science & Technology, Kunsan National University)
  • 목종수 (국립수산과학원 서해수산연구소) ;
  • 송기철 (국립수산과학원 서해수산연구소) ;
  • 강창수 (혜전대학 제과제빵학부) ;
  • 장수현 (군산대학 해양응용공학부)
  • Published : 2002.07.01

Abstract

The edible films were prepared from the protein of alaska pollack, Theragra chalcogrmma. Effects of plasticizer, cross linker and laminated film on physical properties such as tensile strength (TS), elongation (E) and water vapor permeability (WVP) of films were investigated. In adding various kinds of plasticizers, TS of the films prepared with propylene glycol (PG) was the highest, and followed sorbitol, polyethylene glycol 200 (PEG 200) and glycerol. Elongation of the films prepared with glycerol was the highest, then sorbitol, PEG 200 and PG. WVP of films showed lower in order of PG, sorbitol, glycerol and PEG 200.75 decreased with the increment of plasticizer concentration, but elongation increased, The addition of both PG and PEG 200 effected weakly on elongation, so they were inadequate as plasticizer for the film. Mixtures of glycerol and sorbitol, which showed opposing both TS and elongation in the films, could control the physical properties of the films. With increasing relative humidity, TS decreased, while elongation and equilibrium moisture content increased. By adding the cross linkers such as ascorbic acid, citric acid and succinic acid, TS and m of films increased, while elongation decreased. Ascorbic acid, citric acid, succinic acid were most effective for TS at 0.2, 0.1 and $0.1\%, respectively. Laminated film with alaska pollack protein and corn zein improved TS above two times, reduced WVP about $20\~30\%$, as compared with the Elm from alaska pollack protein. Two films did not show the difference to oxygen permeability, but they showed about tenfold greater oxygen resistance than polyethylene film. Laminated film showed higher b and $\Delta$E value of color difference, lower a and L value than the film from alaska pollack protein.

명태 단백질을 이용하여 제조한 가식성 필름의 물성을 개선하기 위하여 필름 제조시 가소제 및 가교제 첨가, 그리고 이중필름에 의한 인장강도, 신장률 및 수분 투과도 등의 영향을 검토하였다. 가소제 첨가에 따른 가식성 필름의 인장강도는 PG, sorbitol, PEG 200 및 glycerol의 순으로 높았고, 신장률은 glycerol, sorbitol, PEG 200 및 PG의 순으로 높았으며, 수분투과도는 PG, sorbitol, glycerol 및 PEG 200의 순으로 낮았다. 또한 가소제의 농도가 증가함에 따라 필름의 인장강도는 감소하고 신장률은 증가하는 경향을 나타내었다. PG와 PEG 200은 신장률에 큰 영향을 미치지 못하여 명태단백질 필름의 가소제로 적절하지 못하였으며, 인장강도와 신장률이 서로 상반되는 glycerol과 sorbitol을 조합함으로써 필름의 물성을 조절할 수 있었다. 한편, 필름은 상대습도가 높을수록 인장강도는 감소하고 신장률과 평형수분함량은 증가하는 경향을 나타내었다. Ascorbic acid, citric acid 및 succinic acid 등의 가교제를 첨가하여 제조한 필름이 가교제 비첨가 필름에 비하여 인장강도와 수분투과도는 증가하고 신장률은 감소하는 경향을 나타내었으며, ascorbic acid는 $0.2%$, citric acid는 $0.1\%$, succinic acid 는 $0.1\%$ 첨가하는 것이 바람직하였다. 명태 단백질과 옥수수 단백질로 제조한 이중필름은 명태 단백질 단독으로 제조한 필름에 비하여 인장강도를 2배 이상 향상시켰고, 수분투과도를 약 $20\~30\%$ 감소시켰다. 한편, 산소투과도는 두 필름간에 차이는 없었으나, polyethylene film에 비하여는 10배 정도 산소차단효과가 우수하였다. 색도를 보면 명태와 옥수수 단백질을 이용하여 제조한 이중필름이 명태 단백질 단독으로 제조한 필름에 비하여 L값과 a값은 낮고 b값과 $\Delta$E값은 높았다

Keywords

References

  1. ASTM. 1989. Standard methods for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor (D3985-81). In AnnuaI Book of ASTM Standards. American Society for Testing and Materials, Philadelphia, PA
  2. ASTM. 1995a. Standard test methods for tensile properties of thin plastic sheeting (D882-95a). In Annual Book of American Standard Testing Methods. American Society for Testing and Materials, West Conshochocken, PA
  3. ASTM. 1995b. Standard test methods for wqter vapor transmission of materials (E96-95). In Annual Book of American Standard Testing Methods. American Society for Testing and Materials, Philadelphia, PA.
  4. Banker, G.S. 1966. Film coating theory and practice. J. Pharm. Sci., 55, 81-87 https://doi.org/10.1002/jps.2600550118
  5. Cho, S.Y., J.W. Park and C. Rhee. 1998a. Edible films from protein concentrations of rice wine meal. Korean J. Food Sci. Technol., 30, 1097-1106 (in Korean)
  6. Cho, S.Y., J.W. Park and C. Rhee. 1998b. Preparation of whey powderbased biopolymer films. Korean J. Food Sci. Technol., 30, 1285-1294 (in Korean)
  7. Cuq, B., C. Aymard, J.L. Cuq and S. Guilbert. 1995, Edible packaging films based on fish myofibrillar proteins: Formulation and functional properties. J. Food Sci., 60, 1369-1374 https://doi.org/10.1111/j.1365-2621.1995.tb04593.x
  8. Gennadios, A. and C.L. Weller. 1990. Edible films and coatings from wheat and corn proteins. Food Technol., 44, 63-69
  9. Gennadios, A., H.J. Park and C.L. Weller. 1993. Relative humidity and temperature effects on tensile strength of edible protein and cellulose ether films. American Soc. Agric. Engineers, 36, 1867-1872 https://doi.org/10.13031/2013.28535
  10. Guilbert, S. 1986. Technology and application of edible protective films. In Food Packaging and Preservation, Theory and Practice. M. Mathlouthi, ed. Elservier Applied Science Pub. Co., London, England, 371pp
  11. Guilbert, S., N. Gontard and L.G.M. Gorris. 1996. Prolonging the shelf-life of perishable food products using biodegradable films and coatings. Lebensm. Wiss. Technol., 29, 10-16 https://doi.org/10.1006/fstl.1996.0002
  12. Kester, J.J. and O. Fennema. 1986. Edible films and coatings: A review. Food Technol., 40, 47-59
  13. Kester, J.J. and O. Fennema. 1989. An edible film of lipids and cellulose ethers: Barrier properties to moisture vapor transmission and structural evaluation. J. Food Sci., 54, 1383-1389 https://doi.org/10.1111/j.1365-2621.1989.tb05118.x
  14. Krochta, J.M. 1992. Control of mass transfer in foods with edible coatings and films. In Advances in Food Engineering. R.P. Singh and M.A. Wirakartakusumah, eds. CRC Press, Inc., Boca Raton, FL, 517pp
  15. Mchugh, T.H. and J.M. Krochta. 1994. Permeability properties of edible films. In Edible Coatings and Films to Improve Food Quality. J.M. Krochta, E.A. Baldwin and M.O. Nisperos-Carriedo, eds. Technomic Publishing Company, Lancaster, PA, USA, 174pp
  16. Song, K.C., J.S. Mok, C.S. Kang and S.H. Chang. 2002. Preparation of edible film from fish protein. J. Korean Fish. Soc., 35, in Printed (in Korean)
  17. Stannett, V. 1986. Simple gases. In Diffusion in Polymers. J. Crank and G.S. Park, eds. Academic Press. Inc., London, 41pp
  18. Yang, S.B., S.Y. Cho and C. Rhee. 1997. Preparation of edible films from soybean meal. Korean J. Food Sci. Technol., 29, 452-459 (in Korean)
  19. You, B.J. and J.M. Shim. 2000. Effects of processing conditions on tensile properties and color of alaska pollack meal protein isolate film. J. Korean Fish. Soc., 33, 418-422 (in Korean)