• Title/Summary/Keyword: plasma enhanced atomic layer deposition

Search Result 74, Processing Time 0.044 seconds

Transparent ZnO Transistor Array by Means of Plasma Enhanced Atomic Layer Deposition

  • Kopark, Sang-Hee;Hwang, Chi-Sun;Kwack, Ho-Sang;Lee, Jung-Ik;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.601-604
    • /
    • 2006
  • We have developed ZnO TFT array using conventional photolithography and wet etching processes. Transparent 20 nm of ultra thin ZnO film deposited by means of plasma enhanced atomic layer deposition at $100^{\circ}C$ was used for the active channel. The ZnO TFT has a mobility of $0.59cm^2/V.s$, a threshold voltage of 7.2V, sub-threshold swing of 0.64V/dec., and an on/off ratio of $10^8$.

  • PDF

Electrical Conductivity Modulation in TaNx Films Grown by Plasma Enhanced Atomic Layer Deposition (플라즈마 강화 원자층 증착법에 의한 TaNx 박막의 전기 전도도 조절)

  • Ryu, Sung Yeon;Choi, Byung Joon
    • Korean Journal of Materials Research
    • /
    • v.28 no.4
    • /
    • pp.241-246
    • /
    • 2018
  • $TaN_x$ film is grown by plasma enhanced atomic layer deposition (PEALD) using t-butylimido tris(dimethylamido) tantalum as a metalorganic source with various reactive gas species, such as $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. Although the pulse sequence and duration are the same, aspects of the film growth rate, microstructure, crystallinity, and electrical resistivity are quite different according to the reactive gas. Crystallized and relatively conductive film with a higher growth rate is acquired using $NH_3$ as a reactive gas while amorphous and resistive film with a lower growth rate is achieved using $N_2+H_2$ mixed gas. To examine the relationship between the chemical properties and resistivity of the film, X-ray photoelectron spectroscopy (XPS) is conducted on the ALD-grown $TaN_x$ film with $N_2+H_2$ mixed gas, $NH_3$, and $H_2$. For a comparison, reactive sputter-grown $TaN_x$ film with $N_2$ is also studied. The results reveal that ALD-grown $TaN_x$ films with $NH_3$ and $H_2$ include a metallic Ta-N bond, which results in the film's higher conductivity. Meanwhile, ALD-grown $TaN_x$ film with a $N_2+H_2$ mixed gas or sputtergrown $TaN_x$ film with $N_2$ gas mainly contains a semiconducting $Ta_3N_5$ bond. Such a different portion of Ta-N and $Ta_3N_5$ bond determins the resistivity of the film. Reaction mechanisms are considered by means of the chemistry of the Ta precursor and reactive gas species.

Study of I layer deposition parameters of deposited micro-crystalline silicon by PECVD at 27.12MHz (27.12MHz PECVD에 의해 증착된 uc-Si의 I층 공정 파라미터 연구)

  • Lee, Kise;Kim, Sunkue;Kim, Sunyoung;Kim, Sangho;Kim, Gunsung;Kim, Beomjoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.66.1-66.1
    • /
    • 2010
  • Microcrystalline silicon at low temperatures has been developed using plasma enhanced chemical vapor deposition (PECVD). It has been found that energetically positive ion and atomic hydrogen collision on to growing surface have important effects on increasing growth rate, and atomic hydrogen density is necessary for the increasing growth rate correspondingly, while keeping ion bombardment is less level. Since the plasma potential is determined by working pressure, the ion energy can be reduced by increasing the deposition pressure of 700-1200 Pa. Also, correlation of the growth rate and crystallinity with deposition parameters such as working pressure, hydrogen flow rate and input power were investigated. Consequently an efficiency of 7.9% was obtained at a high growth rate of 0.92 nm/s at a high RF power 300W using a plasma-enhanced chemical vapor deposition method (27.12MHz).

  • PDF

Electrical Properties of Al2O3 Films Grown by the Electron Cyclotron Resonance Plasma-Enhanced Atomic Layer Deposition (ECR-PEALD) and Thermal ALD Methods (전자 사이클로트론 공명 플라즈마와 열 원자층 증착법으로 제조된 Al2O3 박막의 물리적·전기적 특성 비교)

  • Yang, Dae-Gyu;Kim, Yang-Soo;Kim, Jong-Heon;Kim, Hyoung-Do;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.295-300
    • /
    • 2017
  • Aluminum-oxide($Al_2O_3$) thin films were deposited by electron cyclotron resonance plasma-enhanced atomic layer deposition at room temperature using trimethylaluminum(TMA) as the Al source and $O_2$ plasma as the oxidant. In order to compare our results with those obtained using the conventional thermal ALD method, $Al_2O_3$ films were also deposited with TMA and $H_2O$ as reactants at $280^{\circ}C$. The chemical composition and microstructure of the as-deposited $Al_2O_3$ films were characterized by X-ray diffraction(XRD), X-ray photo-electric spectroscopy(XPS), atomic force microscopy(AFM) and transmission electron microscopy(TEM). Optical properties of the $Al_2O_3$ films were characterized using UV-vis and ellipsometry measurements. Electrical properties were characterized by capacitance-frequency and current-voltage measurements. Using the ECR method, a growth rate of 0.18 nm/cycle was achieved, which is much higher than the growth rate of 0.14 nm/cycle obtained using thermal ALD. Excellent dielectric and insulating properties were demonstrated for both $Al_2O_3$ films.

Selective Atomic Layer Deposition of Co Thin Films Using Co(EtCp)2 Precursor (Co(EtCp)2프리커서를 사용한 Co 박막의 선택적 원자층 증착)

  • Sujeong Kim;Yong Tae Kim;Jaeyeong Heo
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.163-169
    • /
    • 2024
  • As the limitations of Moore's Law become evident, there has been growing interest in advanced packaging technologies. Among various 3D packaging techniques, Cu-SiO2 hybrid bonding has gained attention in heterogeneous devices. However, certain issues, such as its high-temperature processing conditions and copper oxidation, can affect electrical properties and mechanical reliability. Therefore, we studied depositing only a heterometal on top of the Cu in Cu-SiO2 composite substrates to prevent copper surface oxidation and to lower bonding process temperature. The heterometal needs to be deposited as an ultra-thin layer of less than 10 nm, for copper diffusion. We established the process conditions for depositing a Co film using a Co(EtCp)2 precursor and utilizing plasma-enhanced atomic layer deposition (PEALD), which allows for precise atomic level thickness control. In addition, we attempted to use a growth inhibitor by growing a self-assembled monolayer (SAM) material, octadecyltrichlorosilane (ODTS), on a SiO2 substrate to selectively suppress the growth of Co film. We compared the growth behavior of the Co film under various PEALD process conditions and examined their selectivity based on the ODTS growth time.

XPS study of sapphire substrate surface nitridated by plasma activated nitrogen source (Plasma로 활성화된 질소 원자를 사용한 사파이어 기판 표면의 저온 질화처리의 XPS 연구)

  • 이지면;백종식;김경국;김동준;김효근;박성주
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.320-327
    • /
    • 1998
  • The chemical aspects of nitridated surface of sapphire(0001) have been studied by X-ray photoelectron spectroscopy. Nitridated layer was formed by remote plasma enhanced-ultrahigh vacuum deposition at a low temperature range. It was confirmed that this nitridated surface was mainly consists of AIN layer. The relative amounts of nitrogen reacted with AL on the sapphire surface and their surface morphology were investigated with X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) as a function of radio-frequency power, reaction temperature, and reaction time. The amounts of atomic nitrogen activated by plasma which was subsequently incorporated into sapphire were increased with RF power. But the amounts of nitrogen reacted with AI in sapphire was initially increased and then remained constant. However, the relative amounts of AIN were nearly constant with irrespective of nitridation temperature and time. Furthermore, a depth porfile of nitridated layer with XPS showed that the nitridated surface consisted of three layers with different stoichiometry.

  • PDF

Characteristics of ZnO Thin Films by Means of ALD for the Application of Transparent TFT

  • ParkKo, Sang-Hee;Hwang, Chi-Sun;Kwack, Ho-Sang;Kang, Seung-Youl;Lee, Jin-Hong;Chu, Hye-Yong;Lee, Yong-Eui
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1564-1567
    • /
    • 2005
  • Zinc oxide thin films were grown at the t emperature of $100^{\circ}C$ and $150^{\circ}C$ by means of plasma enhanced atomic layer deposition (PEALD) and conventional atomic layer deposition for applying to the transparent thin film transistor (TTFT). The growth rate of $1.9{\AA}/cycle$ with oxygen plasma is similar to that of film grown with water. While the sheet resistivity of ZnO grown with water is 1233 ohm/sq, that of film grown with oxygen plasma was too high to measure with 4 point probe and hall measurement system. The resistivity of the films grown with oxygen plasma estimated to be $10^6$ times larger than that of the films grown with water. The difference of electrical property between two films was caused by the O/Zn atomic ratio. We fabricated ZnO-TFT by means of ALD for the first time and the ZnO channel fabricated with water showed saturation mobility of $0.398cm^2/V{\cdot}s$ with bottom gate configuration.

  • PDF

Improvement in Capacitor Characteristics of Titanium Dioxide Film with Surface Plasma Treatment (플라즈마 표면 처리를 이용한 TiO2 MOS 커패시터의 특성 개선)

  • Shin, Donghyuk;Cho, Hyelim;Park, Seran;Oh, Hoonjung;Ko, Dae-Hong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.32-37
    • /
    • 2019
  • Titanium dioxide ($TiO_2$) is a promising dielectric material in the semiconductor industry for its high dielectric constant. However, for utilization on Si substrate, $TiO_2$ film meets with a difficulty due to the large leakage currents caused by its small conduction band energy offset from Si substrate. In this study, we propose an in-situ plasma oxidation process in plasma-enhanced atomic layer deposition (PE-ALD) system to form an oxide barrier layer which can reduce the leakage currents from Si substrate to $TiO_2$ film. $TiO_2$ film depositions were followed by the plasma oxidation process using tetrakis(dimethylamino)titanium (TDMAT) as a Ti precursor. In our result, $SiO_2$ layer was successfully introduced by the plasma oxidation process and was used as a barrier layer between the Si substrate and $TiO_2$ film. Metal-oxide-semiconductor ($TiN/TiO_2/P-type$ Si substrate) capacitor with plasma oxidation barrier layer showed improved C-V and I-V characteristics compared to that without the plasma oxidation barrier layer.