• 제목/요약/키워드: plant functional genomics

검색결과 142건 처리시간 0.02초

벼 microarray를 이용한 유전자발현 profiling 연구동향 (Current status on expression profiling using rice microarray)

  • 윤웅한;김연기;김창국;한장호;이태호;김동헌;이강섭;박수철;남백희
    • Journal of Plant Biotechnology
    • /
    • 제37권2호
    • /
    • pp.144-152
    • /
    • 2010
  • As the International Rice Genome Sequencing Project (IRGSP) was completed in 2005 and opened to the public, many countries are making a lot of investments in researches on the utilization of sequence information along with system development. Also, the necessity of the functional genomics researches using microarray is increased currently to secure unique genes related with major agricultural traits and analyze metabolic pathways. Microrarray enables efficient analysis of large scale gene expression and related transcription regulation. This review aims to introduce available microarrays made based on rice genome information and current status of gene expression analysis using these microarrays integrated with the databases available to the public. Also, we introduce the researches on the large scale functional analysis of genes related with useful traits and genetic networks. Understanding of the mechanism related with mutual interaction between proteins with co-expression among rice genes can be utilized in the researches for improving major agricultural traits. The direct and indirect interactions of various genes would provide new functionality of rice. The recent results of the various expression profiling analysis in rice will promote functional genomic researches in plants including rice and provide the scientists involved in applications researches with wide variety of expression informations.

High-throughput identification of chrysanthemum gene function and expression: An overview and an effective proposition

  • Nguyen, Toan Khac;Lim, Jin Hee
    • Journal of Plant Biotechnology
    • /
    • 제48권3호
    • /
    • pp.139-147
    • /
    • 2021
  • Since whole-genome duplication (WGD) of diploid Chrysanthemum nankingense and de novo assembly whole-genome of C. seticuspe have been obtained, they have afforded to perceive the diversity evolution and gene discovery in the improved investigation of chrysanthemum breeding. The robust tools of high-throughput identification and analysis of gene function and expression produce their vast importance in chrysanthemum genomics. However, the gigantic genome size and heterozygosity are also mentioned as the major obstacles preventing the chrysanthemum breeding practices and functional genomics analysis. Nonetheless, some of technological contemporaries provide scientific efficient and promising solutions to diminish the drawbacks and investigate the high proficient methods for generous phenotyping data obtaining and system progress in future perspectives. This review provides valuable strategies for a broad overview about the high-throughput identification, and molecular analysis of gene function and expression in chrysanthemum. We also contribute the efficient proposition about specific protocols for considering chrysanthemum genes. In further perspective, the proper high-throughput identification will continue to advance rapidly and advertise the next generation in chrysanthemum breeding.

A Genome-wide Approach for Functional Analysis Using Rice Mutant

  • Yim, Won-Cheol;Kim, Dong-Sub;Moon, Jun-Cheol;Jang, Cheol-Seong;Lee, Byung-Moo
    • 한국작물학회지
    • /
    • 제54권3호
    • /
    • pp.332-338
    • /
    • 2009
  • Rapid extension of genomic database leads to the remarkable advance of functional genomics. This study proposes a novel methodology of functional analysis using 5-methyltrytophan (5 MT) mutant together with their 2-DE analysis and public microarray database. A total of 24 proteins was changed in 5 MT mutant and four remarkably different expressed proteins were identified. Among them, three spots were converted to Affymetrix probe. A total of 155 microarray samples from Gene Expression Omnibus (GEO) in NCBI was retrieved and followed by constructing gene co-expression networks over a broad range of biological issues through Self-Organising Tree Algorithm. Three co-expressing gene clusters were retrieved and each functional categorization with differential expression pattern was exhibited from 5 MT resistance mutant rice. It was indicated new co-expression networks in the mutant. This study suggests that on investigating possibility which correspond 2-DE to microarray database with their full potential.

Mapping of Quantitative Trait Loci Associated with Viviparous Germination in Rice

  • Lee, Seung-Yeob;Ahn, Jeong-Ho;Cha, Young-Soon;Yun, Doh-Won;Lee, Myung-Cheol;Eun, Moo-Young
    • 한국작물학회지
    • /
    • 제51권6호
    • /
    • pp.565-570
    • /
    • 2006
  • The viviparous germination (VG) with lodging caused the yield reduction and quality deterioration in rice. We carried out the evaluation of VG tolerance (on the 40th day after heading) and mapping QTLs associated with VG tolerance using the recombinant inbred lines (M/G RILs) from a cross between Milyang 23 (japonica/indica) and Gihobyeo (japonica). The VG rates of Milyang 23 and Gihobyeo were 0.0 and 7.0%, respectively. The averaged VG rate of 162 M/G RILs was 7.7%, and their range was from 0.0 to 50.9%. Of the 162 RILs, 144 lines were tolerant less than 10%, and 18 lines were susceptible more than 10%. Using the M/G RIL Map, three QTLs associated with the viviparous trait were detected on chromosome 2 (qVG 2-1 and qVG 2-2) and 8 (qVG 8). qVG 2-1 was linked to RM 32D and RZ 166, and had LOD score of 2.97. qVG 2-2 was tightly linked to E13M59.119-Pl and E13M59.M003-P2, and showed higher LOD score of 3.41. qVG 8 was linked to RM33 and TCT116, and had LOD score of 2.67. The total phenotypic variance explained by the three QTLs was about 24.4% of the total variance in the population. The detection of new QTLs associated with VG tolerance will provide important informations for the seed dormancy, low temperature germination, or comparative genetics.

Toward Functional Genomics of Plant-Pathogen Interactions: Isolation and Analysis of Defense-related Genes of Rot Pepper Expressed During Resistance Against Pathogen

  • Park, Do-Il;Lee, Sang-Hyeob
    • The Plant Pathology Journal
    • /
    • 제18권2호
    • /
    • pp.63-67
    • /
    • 2002
  • To understand plant-pathogen interactions, a complete set of hot pepper genes differentially expressed against pathogen attack was isolated. As an initial step, hundreds of differentially expressed cDNAS were isolated from hot pepper leaves showing non-host resistance against bacterial plant pathogens (Xanthomonas campestris pv. glycines and Pseudomonas syringae pv. syringae) using differential display reverse transcription polymerase chain reaction (DDDRT-PCR) technique. Reverse Northern and Northern blot analyses revealed that 50% of those genes were differentially expressed in pepper loaves during non-host resistance response. Among them, independent genes without redundancy were micro-arrayed for further analysis. Random EST sequence database were also generated from various CDNA libraries including pepper tissue specific libraries and leaves showing non-host hypersensitive response against X. campestris pv. glycines. As a primary stage, thousands of cDNA clones were sequenced and EST data were analyzed. These clones are being spotted on glass slide to study the expression profiling. Results of this study may further broaden knowledge on plant-pathogen interactions.

기능획득 돌연변이 인삼 모상근의 대량생산 (Mass Production of Gain-of-Function Mutants of Hair Roots in Ginseng)

  • 고석민;인동수;정화지;최동욱;유장렬
    • Journal of Plant Biotechnology
    • /
    • 제34권4호
    • /
    • pp.285-291
    • /
    • 2007
  • 본 연구는 아그로박테리움 공동배양법을 이용한 기능획득 인삼 모상근의 대량생산을 위한 조건 확립에 대한 것이다. 일반적으로, 인삼과 같이 형질전환을 통한종자의 확보가 어려운 식물에서는 loss-of-function을 이용한 기능유전체 연구에 한계가 있다. 한편, 유전자의 기능을 활성화시키는 방법 (gain-of-function)인 activation tagging 기술은 이러한 문제점을 극복할 수 있는 대안이 될 수 있으며, Agrobacterium rhizogenes를 이용한 모상근 생산 시스템은 대량의 돌연변이체를 안정적으로 용이하게 얻을 수 있다는 점에서 최적의 시스템이라고 할 수 있다. 본 연구에서는 activation-tagging된 효율적인 형질전환 모상근 생산에 있어서의 최적의 아그로박테리움 균주 및 인삼조직, 배지조성 등에 대한 조건을 확립하였으며, 다양한 배지에서의 형질전환 모상근의 생장률 및 분지율, 표현형 등을 조사하였다. 엽병 절편을 activation-tagging vector pKH01을 가지고 있는 A. rhizogenes R1000와 공동배양하였을 때 배양 4주후 85.9%의 빈도로 모상근이 생산되었다. 모상근의 최대 생장과 분지도를 나타내는 배양조건을 조사한 바 엽병절편을 1/2 SH 배지에서 4주 배양하였을 때 왕성하게 생장하였으며 2.6의 분지도를 보여주었다. 최종적으로 1,989개체의 독립적인 형질전환 모상근 line을 생산하였으며, 이들 모상근 line은 인삼 진세노사이드 생합성 관련 유전자의 발굴 및 기능해석에 유용하게 쓰일 것이다.

Potential Benefit of Genetic Engineering in Plant Breeding: Rice, a Case Study

  • Datta, Swapan K.
    • Journal of Applied Biological Chemistry
    • /
    • 제43권4호
    • /
    • pp.197-206
    • /
    • 2000
  • This paper summarizes recent developments in the field of molecular biology and its application to plant breeding, particularly in rice. Plant breeding in the past mostly depended on the time-consuming crossing of known genomes limited to certain traits. Plant breeding has now benefited from marker-assisted selection and genetic engineering to widen the gene pool, improve plant protection, and increase yield. Future plant breeding will expand based on functional and nutritional genomics, in which gene discovery and high-throughput transformation will accelerate crop design and benefits will accrue to human health, in the form of nutritional food for poor people to reduce malnutrition, or food enriched with antioxidants and with high food value for rich people. Agricultural biotechnology for food is no longer a dream but a reality that will dominate the 21st century for agriculture and human welfare.

  • PDF

Characterization and Transcriptional Expression of the α-Expansin Gene Family in Rice

  • Shin, Jun-Hye;Jeong, Dong-Hoon;Park, Min Chul;An, Gynheung
    • Molecules and Cells
    • /
    • 제20권2호
    • /
    • pp.210-218
    • /
    • 2005
  • The rice genome contains at least 28 EXPA (${\alpha}$-expansin) genes. We have obtained near full-length cDNAs from the previously uncharacterized genes. Analysis of these newly identified clones together with the 12 identified earlier showed that the EXPA genes contain up to two introns and encode proteins of 240 to 291 amino acid residues. The EXPA proteins contain three conserved motifs: eight cysteine residues at the N-terminus, four tryptophan residues at the C-terminus, and a histidine-phenylalanine-aspartate motif in the central region. EXPA proteins could be divided into six groups based on their sequence similarity. Most were strongly induced in two-day-old seedlings and in the roots of one-week-old plants. However, only 14 genes were expressed in the aboveground organs, and their patterns were quite diverse. Transcript levels of EXPA7, 14, 15, 18, 21, and 29 were greater in stems, while EXPA2, 4, 5, 6, and 16 were highly expressed in both stem and sheath but not in leaf blade. EXPA1 is leaf blade-preferential, and EXP9 is leaf sheath-preferential. Most of the root-expressed genes were more strongly expressed in the dividing zone. However, the Group 2 EXPA genes were also strongly expressed in both mature and dividing zones, while EXPA9 was preferentially expressed in the elongation zone. Fourteen EXPA genes were expressed in developing panicles, with some being expressed during most developmental stages, others only as the panicles matured. These diverse expression patterns of EXPA genes suggest that in general they have distinct roles in plant growth and development.

Analysis of Intragenic Ds Transpositions and Excision Events Generating Novel Allelic Variation in Rice

  • Park, Soon Ju;Piao, Hai Long;Xuan, Yuan-hu;Park, Sung Han;Je, Byoung Il;Kim, Chul Min;Lee, Eun Jin;Park, Soo Hyun;Ryu, ByeongChan;Lee, Kon Ho;Lee, Gi Hwan;Nam, Min Hee;Yeo, Un Sang;Lee, Myung Chul;Yun, Doh Won;Eun, Moo Young;Han, Chang-deok
    • Molecules and Cells
    • /
    • 제21권2호
    • /
    • pp.284-293
    • /
    • 2006
  • Even though Ac/Ds gene-tagging systems have been established in many higher plants, maize is the only major plant in which short-distance transposition of Ac/Ds has been utilized to probe gene function. This study was performed to evaluate the efficiency of obtaining new alleles and functional revertants from Ds insertion loci in rice. By analyzing 1,580 plants and the progeny of selected lines, the insertion sites and orientations of Ds elements within 16 new heritable alleles of three rice loci were identified and characterized. Intragenic transposition was detected in both directions from the original insertion sites. The closest interval was 35 bp. Three of the alleles had two Ds elements in cis configuration in the same transcription units. We also analyzed the excision footprints of intragenic and extragenic transpositions in Ds-inserted alleles at 5 loci. The 134 footprints obtained from different plants revealed predominant patterns. Ds excision at each locus left a predominant footprint at frequencies of 30-75%. Overall, 66% of the footprints were 7-bp additions. In addition, 16% of the excisions left 0-, 3-, 6-, and 9-bp additions with the potential of conserving reading frame.