Browse > Article
http://dx.doi.org/10.5010/JPB.2021.48.3.139

High-throughput identification of chrysanthemum gene function and expression: An overview and an effective proposition  

Nguyen, Toan Khac (Department of Plant Biotechnology, Sejong University)
Lim, Jin Hee (Department of Plant Biotechnology, Sejong University)
Publication Information
Journal of Plant Biotechnology / v.48, no.3, 2021 , pp. 139-147 More about this Journal
Abstract
Since whole-genome duplication (WGD) of diploid Chrysanthemum nankingense and de novo assembly whole-genome of C. seticuspe have been obtained, they have afforded to perceive the diversity evolution and gene discovery in the improved investigation of chrysanthemum breeding. The robust tools of high-throughput identification and analysis of gene function and expression produce their vast importance in chrysanthemum genomics. However, the gigantic genome size and heterozygosity are also mentioned as the major obstacles preventing the chrysanthemum breeding practices and functional genomics analysis. Nonetheless, some of technological contemporaries provide scientific efficient and promising solutions to diminish the drawbacks and investigate the high proficient methods for generous phenotyping data obtaining and system progress in future perspectives. This review provides valuable strategies for a broad overview about the high-throughput identification, and molecular analysis of gene function and expression in chrysanthemum. We also contribute the efficient proposition about specific protocols for considering chrysanthemum genes. In further perspective, the proper high-throughput identification will continue to advance rapidly and advertise the next generation in chrysanthemum breeding.
Keywords
Chrysanthemum breeding; Gene expression; Gene function; Genomics analysis; High-throughput sequencing; Phenotyping data;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genom. 14:662. https://doi.org/10.1186/1471-2164-14-662   DOI
2 Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X (2018) The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep. 37:1049-1060. https://doi.org/10.1007/s00299-018-2290-9   DOI
3 Li P, Song A, Gao C, Wang L, Wang Y, Sun J, Jiang J, Chen F, Chen S (2015b) Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Rep. 34:1365-1378. https://doi.org/10.1007/s00299-015-1793-x   DOI
4 Dierck R, Leus L, Dhooghe E, Van Huylenbroeck J, De Riek J, Van Der Straeten D, De Keyser E (2018) Branching gene expression during chrysanthemum axillary bud outgrowth regulated by strigolactone and auxin transport. Plant Growth Regul. 86:23-36. https://doi.org/10.1007/s10725-018-0408-2   DOI
5 He H, Yajing N, Huawen C, Xingjiao T, Xinli X, Weilun Y, Silan D (2012) cDNA-AFLP analysis of salt-inducible genes expression in Chrysanthemum lavandulifolium under salt treatment. J. Plant Physiol. 169:410-420. https://doi.org/10.1016/j.jplph.2011.09.013   DOI
6 Du X, Li W, Sheng L, Deng Y, Wang Y, Zhang W, Yu K, Jiang J, Fang W, et al (2018) Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biol. 18:178-178. https://doi.org/10.1186/s12870-018-1400-8   DOI
7 Fan Q, Song A, Jiang J, Zhang T, Sun H, Wang Y, Chen S, Chen F (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. Plos One 11:e0150572-e0150572. https://doi.org/10.1371/journal.pone.0150572   DOI
8 Gao TW, Zhang WW, Song AP, An C, Xin JJ, Jiang JF, Guan ZY, Chen FD, Chen SM (2018a) Phylogenetic and transcriptional analysis of chrysanthemum GRAS transcription factors. Biol. Plant. 62:711-720. https://doi.org/10.1007/s10535-018-0816-1   DOI
9 Wang S, Zhang C, Zhao J, Li R, Lv J (2019b) Expression analysis of four pseudo-response regulator (PRR) genes in Chrysanthemum morifolium under different photoperiods. PeerJ 7:e6420. https://doi.org/10.7717/peerj.6420   DOI
10 Wang Y, Huang H, Ma Y-P, Jianxin F, Wang L, Dai S (2014) Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: Analysis of gene expression patterns in floral bud emergence. Plant Cell 116. https://doi.org/10.1007/s11240-013-0404-1   DOI
11 Xia Y, Hu Z, Li X, Wang P, Zhang X, Li Q, Lu C (2016) The complete chloroplast genome sequence of Chrysanthemum indicum. Mitochondrial DNA Part A 27:4668-4669. https://doi.org/10.3109/19401736.2015.1106494   DOI
12 Yagi M (2018) Recent progress in whole genome sequencing, high-density linkage maps, and genomic databases of ornamental plants. Breed. Sci. 68:62-70. https://doi.org/10.1270/jsbbs.17080   DOI
13 Sun C-H, Yu J-Q, Duan X, Wang J-H, Zhang Q-Y, Gu K-D, Hu D-G, Zheng C-S (2018) The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. Hortic. Res. 5:52-52. https://doi.org/10.1038/s41438-018-0061-y   DOI
14 Yeong TJ, Pin Jern K, Yao LK, Hannan MA, Hoon STG (2019) Applications of photonics in agriculture sector: A review. Molecules (Basel, Switzerland) 24:2025. https://doi.org/10.3390/molecules24102025   DOI
15 Yue J, Zhu C, Zhou Y, Niu X, Miao M, Tang X, Chen F, Zhao W, Liu Y (2018) Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium 'Chuju'. Sci. Rep. 8:13414-13414. https://doi.org/10.1038/s41598-018-31831-6   DOI
16 Zhang F, Dong W, Huang L, Song A, Wang H, Fang W, Chen F, Teng N (2015) Identification of microRNAs and their targets associated with embryo abortion during Chrysanthemum cross breeding via high-throughput sequencing. Plos One 10:e0124371. https://doi.org/10.1371/journal.pone.0124371   DOI
17 Wang H, Jiang J, Chen S, Qi X, Peng H, Li P, Song A, Guan Z, Fang W, et al (2013b) Next-generation sequencing of the Chrysanthemum nankingense (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. Plos One 8:e62293-e62293. https://doi.org/10.1371/journal.pone.0062293   DOI
18 Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, et al (2014) A Zinc finger protein regulates flowering time and abiotic stress tolerance in Chrysanthemum by modulating gibberellin biosynthesis. The Plant Cell 26: 2038-2054. https://doi.org/10.1105/tpc.114.124867   DOI
19 He H, Yuting L, Ya P, Mi Z, Silan D (2019) Transcriptome analysis of Chrysanthemum lavandulifolium response to salt stress and overexpression a K+ transport ClAKT gene-enhanced salt tolerance in transgenic Arabidopsis. J. Amer. Soc. Hort. Sci. 144:219-235. https://doi.org/10.21273/JASHS04629-18   DOI
20 Gao Y, Gao Y, Fan M, Yuan L, Wu Z, Zhang Q (2017) Overexpression of Chrysanthemum morifolium SVP gene delays blossoming and regulates inflorescence architecture in transgenic Arabidopsis. Can. J. Plant Sci. 97:1130-1139. https://doi.org/10.1139/cjps-2017-0007   DOI
21 Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S, Hisamatsu T (2013) The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc. Natl. Acad. Sci. U. S. A. 110:17137. https://doi.org/10.1073/pnas.1307617110   DOI
22 Hong Y, Li M, Dai S (2019) Ectopic expression of multiple Chrysanthemum (Chrysanthemum × morifolium) R2R3-MYB transcription factor genes regulates anthocyanin accumulation in Tobacco. Periodical Tile 10. https://doi.org/10.3390/genes10100777   DOI
23 Luo C, Chen D, Cheng X, Zhao H, Huang C (2017) Genome size estimations in Chrysanthemum and correlations with molecular phylogenies. Genet. Resour. Crop Evol. 64:1451-1463. https://doi.org/10.1007/s10722-016-0448-2   DOI
24 Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLOS Genet. 4:e1000255. https://doi.org/10.1371/journal.pgen.1000255   DOI
25 Li H, Chen S, Song A, Wang H, Fang W, Guan Z, Jiang J, Chen F (2014) RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genom. 15:9. https://doi.org/10.1186/1471-2164-15-9   DOI
26 Li S, Li M, Li Z, Zhu Y, Ding H, Fan X, Li F, Wang Z (2019) Effects of the silencing of CmMET1 by RNA interference in chrysanthemum (Chrysanthemum morifolium). Plant Biotechnol. Rep. 13:63-72. https://doi.org/10.1007/s11816-019-00516-5   DOI
27 Naing AH, Ai TN, Jeon SM, Park KI, Lim KB, Kim CK (2015) Expression of RsMYB1 in chrysanthemum regulates key anthocyanin biosynthetic genes. Electron. J. Biotechnol. 18:359-364. https://doi.org/10.1016/j.ejbt.2015.07.001   DOI
28 Nguyen TK, Ha STT, Lim JH (2020) Analysis of chrysanthemum genetic diversity by genotyping-by-sequencing. Hortic. Environ. Biotechnol. 61:903-913. https://doi.org/10.1007/s13580-020-00274-2   DOI
29 Coppens F, Wuyts N, Inze D, Dhondt S (2017) Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr. Opin. Syst. Biol. 4:58-63. https://doi.org/10.1016/j.coisb.2017.07.002   DOI
30 Jaffar MA, Song A, Faheem M, Chen S, Jiang J, Liu C, Fan Q, Chen F (2016) Involvement of CmWRKY10 in drought tolerance of Chrysanthemum through the ABA-signaling pathway. Int. J. Mol. Sci. 17:693. https://doi.org/10.3390/ijms17050693   DOI
31 Li F, Zhang H, Zhao H, Gao T, Song A, Jiang J, Chen F, Chen S (2018) Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum. Plant Biotechnol J. 16:1311-1321. https://doi.org/10.1111/pbi.12871   DOI
32 Li P, Song A, Gao C, Jiang J, Chen S, Fang W, Zhang F, Chen F (2015a) The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiol. Biochem. 95:26-34. https://doi.org/10.1016/j.plaphy.2015.07.002   DOI
33 Liang Q-Y, Wu Y-H, Wang K, Bai Z-Y, Liu Q-L, Pan Y-Z, Zhang L, Jiang B-B (2017) Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum. Sci. Rep. 7:4799-4799. https://doi.org/10.1038/s41598-017-05170-x   DOI
34 Liu H, Sun M, Du D, Pan H, Cheng T, Wang J, Zhang Q (2015) Whole-transcriptome analysis of differentially expressed genes in the vegetative buds, floral buds and buds of Chrysanthemum morifolium. Plos One 10:e0128009. https://doi.org/10.1371/journal.pone.0128009   DOI
35 Huang D, Li X, Sun M, Zhang T, Pan H, Cheng T, Wang J, Zhang Q (2016) Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front. Plant Sci. 7:1633-1633. https://doi.org/10.3389/fpls.2016.01633   DOI
36 Qi Y, Liu Y, Zhang Z, Gao J, Guan Z, Fang W, Chen S, Chen F, Jiang J (2018) The over-expression of a chrysanthemum gene encoding an RNA polymerase II CTD phosphatase-like 1 enzyme enhances tolerance to heat stress. Hortic. Res. 5:37-37. https://doi.org/10.1038/s41438-018-0037-y   DOI
37 Hirakawa H, Sumitomo K, Hisamatsu T, Nagano S, Shirasawa K, Higuchi Y, Kusaba M, Koshioka M, Nakano Y, et al (2019) De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res. 26:195-203. https://doi.org/10.1093/dnares/dsy048   DOI
38 Zhang F, Zhao J, Xu S, Fang W, Chen F, Teng N (2017) MicroRNA and putative target discoveries in Chrysanthemum polyploidy breeding. Int. J. Genomics 2017:6790478-6790478. https://doi.org/10.1155/2017/6790478   DOI
39 Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC (2004) Identification and characterization of four Chrysanthemum MADS-Box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol. 134:1632. https://doi.org/10.1104/pp.103.036665   DOI
40 Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisamatsu T (2012) CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J. Exp. Bot. 63:1461-1477. https://doi.org/10.1093/jxb/err387   DOI
41 Poorter H, Fiorani F, Stitt M, Schurr U, Finck A, Gibon Y, Usadel B, Munns R, Atkin OK, et al (2012) The art of growing plants for experimental purposes: a practical guide for the plant biologist. Funct. Plant Biol. 39:821-838   DOI
42 Qi S, Yang L, Wen X, Hong Y, Song X, Zhang M, Dai S (2016) Reference gene selection for RT-qPCR analysis of flower development in Chrysanthemum morifolium and Chrysanthemum lavandulifolium. Front. Plant Sci. 7:287-287. https://doi.org/10.3389/fpls.2016.00287   DOI
43 Puangkrit T, Narumi-Kawasaki T, Takamura T, Fukai S (2018) Isolation and analysis of the key enzyme genes in the flavonoid biosynthesis pathway in chrysanthemum. In, Ed 1208. Intern. Soc. Hortic. Sci. (ISHS), Leuven, Belgium, pp 53-60. https://doi.org/10.17660/ActaHortic.2018.1208.8   DOI
44 Marzachi C, Bosco D (2005) Relative quantification of Chrysanthemum yellows (16Sr I) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol. Biotech. 30:117-128. https://doi.org/10.1385/MB:30:2:117   DOI
45 Mochida K, Koda S, Inoue K, Hirayama T, Tanaka S, Nishii R, Melgani F (2018) Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective. GigaScience 8. https://doi.org/10.1093/gigascience/giy153   DOI
46 Nguyen TK, Lim J-H (2019) Tools for Chrysanthemum genetic research and breeding: Is genotyping-by-sequencing (GBS) the best approach? Hortic. Environ. Biotechnol. 60:625-635. https://doi.org/10.1007/s13580-019-00160-6   DOI
47 Sasaki K, Mitsuda N, Nashima K, Kishimoto K, Katayose Y, Kanamori H, Ohmiya A (2017) Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology. BMC Genom. 18:683. https://doi.org/10.1186/s12864-017-4061-3   DOI
48 Song A, Gao T, Wu D, Xin J, Chen S, Guan Z, Wang H, Jin L, Chen F (2016b) Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors. Plant Physiol. Biochem. 102:10-16. https://doi.org/10.1016/j.plaphy.2016.02.009   DOI
49 Song A, Wang L, Chen S, Jiang J, Guan Z, Li P, Chen F (2015) Identification of nitrogen starvation-responsive microRNAs in Chrysanthemum nankingense. Plant Physiol. Biochem. 91:41-48. https://doi.org/10.1016/j.plaphy.2015.04.003   DOI
50 Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F (2019) Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic. Res. 6:109. https://doi.org/10.1038/s41438-019-0193-8   DOI
51 Teixeira da Silva JA, Shinoyama H, Aida R, Matsushita Y, Raj SK, Chen F (2013) Chrysanthemum biotechnology: Quo vadis? Crit. Rev. Plant Sci. 32:21-52. https://doi.org/10.1080/07352689.2012.696461   DOI
52 Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818. https://doi.org/10.1126/science.1183700   DOI
53 Wang H, Jiang J, Chen S, Fang W, Guan Z, Liao Y, Chen F (2013a) Rapid genomic and transcriptomic alterations induced by wide hybridization: Chrysanthemum nankingense×Tanacetum vulgare and C. crassum×Crossostephium chinense (Asteraceae). BMC Genom. 14:902. https://doi.org/10.1186/1471-2164-14-902   DOI
54 Saracco P, Bosco D, Veratti F, Marzachi C (2005) Quantification over time of chrysanthemum yellows phytoplasma (16Sr-I) in leaves and roots of the host plant Chrysanthemum carinatum (Schousboe) following inoculation with its insect vector. Physiol. Mol. Plant Pathol. 67:212-219. https://doi.org/10.1016/j.pmpp.2006.02.001   DOI
55 Fan Q, Song A, Xin J, Chen S, Jiang J, Wang Y, Li X, Chen F (2015) CmWRKY15 facilitates Alternaria tenuissima infection of chrysanthemum. Plos One 10:e0143349-e0143349. https://doi.org/10.1371/journal.pone.0143349   DOI
56 Furbank R (2009) Plant phenomics: from gene to form and function. Funct. Plant Biol. 36:V-VI. https://doi.org/10.1071/FPv36n11_FO   DOI
57 Gao W, He M, Liu J, Ma X, Zhang Y, Dai S, Zhou Y (2018b) Overexpression of Chrysanthemum lavandulifolium ClCBF1 in Chrysanthemum morifolium 'White Snow' improves the level of salinity and drought tolerance. Plant Physiol. Biochem. 124:50-58. https://doi.org/10.1016/j.plaphy.2018.01.004   DOI
58 Song A, Gao T, Li P, Chen S, Guan Z, Wu D, Xin J, Fan Q, Zhao K, et al (2016a) Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.00199   DOI
59 Song C, Liu Y, Song A, Dong G, Zhao H, Sun W, Ramakrishnan S, Wang Y, Wang S, et al (2018) The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits. Mol. Plant 11:1482-1491. https://doi.org/10.1016/j.molp.2018.10.003   DOI
60 Valles J, Canela MA, Garcia S, Hidalgo O, Pellicer J, SanchezJimenez I, Siljak-Yakovlev S, Vitales D, Garnatje T (2013) Genome size variation and evolution in the family Asteraceae. Caryologia 66:221-235. https://doi.org/10.1080/00087114.2013.829690   DOI
61 Takino H, Kitajima S, Hirano S, Oka M, Matsuura T, Ikeda Y, Kojima M, Takebayashi Y, Sakakibara H, et al (2019) Global transcriptome analyses reveal that infection with chrysanthemum stunt viroid (CSVd) affects gene expression profile of chrysanthemum plants, but the genes involved in plant hormone metabolism and signaling may not be silencing target of CSVd-siRNAs. Plant Gene 18:100181. https://doi.org/10.1016/j.plgene.2019.100181   DOI
62 Wang K, Bai Z-Y, Liang Q-Y, Liu Q-L, Zhang L, Pan Y-Z, Liu G-L, Jiang B-B, Zhang F, et al (2018a) Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. BMC Genom. 19:319-319. https://doi.org/10.1186/s12864-018-4706-x   DOI
63 Wang K, Wu Y-H, Tian X-Q, Bai Z-Y, Liang Q-Y, Liu Q-L, Pan Y-Z, Zhang L, Jiang B-B (2017) Overexpression of DgWRKY4 enhances salt tolerance in Chrysanthemum seedlings. Front. Plant Sci. 8:1592-1592. https://doi.org/10.3389/fpls.2017.01592   DOI
64 Wang J, Guan Y, Ding L, Li P, Zhao W, Jiang J, Chen S, Chen F (2019a) The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Sci. 280:248-257. https://doi.org/10.1016/j.plantsci.2018.12.008   DOI
65 Wang S, Song Q, Li S, Hu Z, Dong G, Song C, Huang H, Liu Y (2018b) Assembly of a complete mitogenome of Chrysanthemum nankingense using Oxford nanopore long reads and the diversity and evolution of Asteraceae mitogenomes. Genes (Basel) 9. https://doi.org/10.3390/genes9110547   DOI
66 Wei Q, Ma C, Xu Y, Wang T, Chen Y, Lu J, Zhang L, Jiang C-Z, Hong B, et al (2017) Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 8:829-829. https://doi.org/10.1038/s41467-017-00812-0   DOI
67 Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R (2017) Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci. Adv. 3:e1602785-e1602785. https://doi.org/10.1126/sciadv.1602785   DOI