DOI QR코드

DOI QR Code

High-throughput identification of chrysanthemum gene function and expression: An overview and an effective proposition

  • Received : 2021.07.04
  • Accepted : 2021.07.28
  • Published : 2021.09.30

Abstract

Since whole-genome duplication (WGD) of diploid Chrysanthemum nankingense and de novo assembly whole-genome of C. seticuspe have been obtained, they have afforded to perceive the diversity evolution and gene discovery in the improved investigation of chrysanthemum breeding. The robust tools of high-throughput identification and analysis of gene function and expression produce their vast importance in chrysanthemum genomics. However, the gigantic genome size and heterozygosity are also mentioned as the major obstacles preventing the chrysanthemum breeding practices and functional genomics analysis. Nonetheless, some of technological contemporaries provide scientific efficient and promising solutions to diminish the drawbacks and investigate the high proficient methods for generous phenotyping data obtaining and system progress in future perspectives. This review provides valuable strategies for a broad overview about the high-throughput identification, and molecular analysis of gene function and expression in chrysanthemum. We also contribute the efficient proposition about specific protocols for considering chrysanthemum genes. In further perspective, the proper high-throughput identification will continue to advance rapidly and advertise the next generation in chrysanthemum breeding.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Export Promotion Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (No. 617076-05-5-SB110).

References

  1. Coppens F, Wuyts N, Inze D, Dhondt S (2017) Unlocking the potential of plant phenotyping data through integration and data-driven approaches. Curr. Opin. Syst. Biol. 4:58-63. https://doi.org/10.1016/j.coisb.2017.07.002
  2. Dierck R, Leus L, Dhooghe E, Van Huylenbroeck J, De Riek J, Van Der Straeten D, De Keyser E (2018) Branching gene expression during chrysanthemum axillary bud outgrowth regulated by strigolactone and auxin transport. Plant Growth Regul. 86:23-36. https://doi.org/10.1007/s10725-018-0408-2
  3. Du X, Li W, Sheng L, Deng Y, Wang Y, Zhang W, Yu K, Jiang J, Fang W, et al (2018) Over-expression of chrysanthemum CmDREB6 enhanced tolerance of chrysanthemum to heat stress. BMC Plant Biol. 18:178-178. https://doi.org/10.1186/s12870-018-1400-8
  4. Fan Q, Song A, Jiang J, Zhang T, Sun H, Wang Y, Chen S, Chen F (2016) CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes. Plos One 11:e0150572-e0150572. https://doi.org/10.1371/journal.pone.0150572
  5. Fan Q, Song A, Xin J, Chen S, Jiang J, Wang Y, Li X, Chen F (2015) CmWRKY15 facilitates Alternaria tenuissima infection of chrysanthemum. Plos One 10:e0143349-e0143349. https://doi.org/10.1371/journal.pone.0143349
  6. Furbank R (2009) Plant phenomics: from gene to form and function. Funct. Plant Biol. 36:V-VI. https://doi.org/10.1071/FPv36n11_FO
  7. Gao TW, Zhang WW, Song AP, An C, Xin JJ, Jiang JF, Guan ZY, Chen FD, Chen SM (2018a) Phylogenetic and transcriptional analysis of chrysanthemum GRAS transcription factors. Biol. Plant. 62:711-720. https://doi.org/10.1007/s10535-018-0816-1
  8. Gao W, He M, Liu J, Ma X, Zhang Y, Dai S, Zhou Y (2018b) Overexpression of Chrysanthemum lavandulifolium ClCBF1 in Chrysanthemum morifolium 'White Snow' improves the level of salinity and drought tolerance. Plant Physiol. Biochem. 124:50-58. https://doi.org/10.1016/j.plaphy.2018.01.004
  9. Gao Y, Gao Y, Fan M, Yuan L, Wu Z, Zhang Q (2017) Overexpression of Chrysanthemum morifolium SVP gene delays blossoming and regulates inflorescence architecture in transgenic Arabidopsis. Can. J. Plant Sci. 97:1130-1139. https://doi.org/10.1139/cjps-2017-0007
  10. He H, Yajing N, Huawen C, Xingjiao T, Xinli X, Weilun Y, Silan D (2012) cDNA-AFLP analysis of salt-inducible genes expression in Chrysanthemum lavandulifolium under salt treatment. J. Plant Physiol. 169:410-420. https://doi.org/10.1016/j.jplph.2011.09.013
  11. He H, Yuting L, Ya P, Mi Z, Silan D (2019) Transcriptome analysis of Chrysanthemum lavandulifolium response to salt stress and overexpression a K+ transport ClAKT gene-enhanced salt tolerance in transgenic Arabidopsis. J. Amer. Soc. Hort. Sci. 144:219-235. https://doi.org/10.21273/JASHS04629-18
  12. Higuchi Y, Narumi T, Oda A, Nakano Y, Sumitomo K, Fukai S, Hisamatsu T (2013) The gated induction system of a systemic floral inhibitor, antiflorigen, determines obligate short-day flowering in chrysanthemums. Proc. Natl. Acad. Sci. U. S. A. 110:17137. https://doi.org/10.1073/pnas.1307617110
  13. Hirakawa H, Sumitomo K, Hisamatsu T, Nagano S, Shirasawa K, Higuchi Y, Kusaba M, Koshioka M, Nakano Y, et al (2019) De novo whole-genome assembly in Chrysanthemum seticuspe, a model species of Chrysanthemums, and its application to genetic and gene discovery analysis. DNA Res. 26:195-203. https://doi.org/10.1093/dnares/dsy048
  14. Hong Y, Li M, Dai S (2019) Ectopic expression of multiple Chrysanthemum (Chrysanthemum × morifolium) R2R3-MYB transcription factor genes regulates anthocyanin accumulation in Tobacco. Periodical Tile 10. https://doi.org/10.3390/genes10100777
  15. Huang D, Li X, Sun M, Zhang T, Pan H, Cheng T, Wang J, Zhang Q (2016) Identification and characterization of CYC-like genes in regulation of ray floret development in Chrysanthemum morifolium. Front. Plant Sci. 7:1633-1633. https://doi.org/10.3389/fpls.2016.01633
  16. Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLOS Genet. 4:e1000255. https://doi.org/10.1371/journal.pgen.1000255
  17. Jaffar MA, Song A, Faheem M, Chen S, Jiang J, Liu C, Fan Q, Chen F (2016) Involvement of CmWRKY10 in drought tolerance of Chrysanthemum through the ABA-signaling pathway. Int. J. Mol. Sci. 17:693. https://doi.org/10.3390/ijms17050693
  18. Li F, Zhang H, Zhao H, Gao T, Song A, Jiang J, Chen F, Chen S (2018) Chrysanthemum CmHSFA4 gene positively regulates salt stress tolerance in transgenic chrysanthemum. Plant Biotechnol J. 16:1311-1321. https://doi.org/10.1111/pbi.12871
  19. Li H, Chen S, Song A, Wang H, Fang W, Guan Z, Jiang J, Chen F (2014) RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genom. 15:9. https://doi.org/10.1186/1471-2164-15-9
  20. Li P, Song A, Gao C, Jiang J, Chen S, Fang W, Zhang F, Chen F (2015a) The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance. Plant Physiol. Biochem. 95:26-34. https://doi.org/10.1016/j.plaphy.2015.07.002
  21. Li P, Song A, Gao C, Wang L, Wang Y, Sun J, Jiang J, Chen F, Chen S (2015b) Chrysanthemum WRKY gene CmWRKY17 negatively regulates salt stress tolerance in transgenic chrysanthemum and Arabidopsis plants. Plant Cell Rep. 34:1365-1378. https://doi.org/10.1007/s00299-015-1793-x
  22. Li S, Li M, Li Z, Zhu Y, Ding H, Fan X, Li F, Wang Z (2019) Effects of the silencing of CmMET1 by RNA interference in chrysanthemum (Chrysanthemum morifolium). Plant Biotechnol. Rep. 13:63-72. https://doi.org/10.1007/s11816-019-00516-5
  23. Liang Q-Y, Wu Y-H, Wang K, Bai Z-Y, Liu Q-L, Pan Y-Z, Zhang L, Jiang B-B (2017) Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum. Sci. Rep. 7:4799-4799. https://doi.org/10.1038/s41598-017-05170-x
  24. Liu H, Sun M, Du D, Pan H, Cheng T, Wang J, Zhang Q (2015) Whole-transcriptome analysis of differentially expressed genes in the vegetative buds, floral buds and buds of Chrysanthemum morifolium. Plos One 10:e0128009. https://doi.org/10.1371/journal.pone.0128009
  25. Luo C, Chen D, Cheng X, Zhao H, Huang C (2017) Genome size estimations in Chrysanthemum and correlations with molecular phylogenies. Genet. Resour. Crop Evol. 64:1451-1463. https://doi.org/10.1007/s10722-016-0448-2
  26. Marzachi C, Bosco D (2005) Relative quantification of Chrysanthemum yellows (16Sr I) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol. Biotech. 30:117-128. https://doi.org/10.1385/MB:30:2:117
  27. Mochida K, Koda S, Inoue K, Hirayama T, Tanaka S, Nishii R, Melgani F (2018) Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective. GigaScience 8. https://doi.org/10.1093/gigascience/giy153
  28. Naing AH, Ai TN, Jeon SM, Park KI, Lim KB, Kim CK (2015) Expression of RsMYB1 in chrysanthemum regulates key anthocyanin biosynthetic genes. Electron. J. Biotechnol. 18:359-364. https://doi.org/10.1016/j.ejbt.2015.07.001
  29. Nguyen TK, Lim J-H (2019) Tools for Chrysanthemum genetic research and breeding: Is genotyping-by-sequencing (GBS) the best approach? Hortic. Environ. Biotechnol. 60:625-635. https://doi.org/10.1007/s13580-019-00160-6
  30. Nguyen TK, Ha STT, Lim JH (2020) Analysis of chrysanthemum genetic diversity by genotyping-by-sequencing. Hortic. Environ. Biotechnol. 61:903-913. https://doi.org/10.1007/s13580-020-00274-2
  31. Nie J, Wen C, Xi L, Lv S, Zhao Q, Kou Y, Ma N, Zhao L, Zhou X (2018) The AP2/ERF transcription factor CmERF053 of chrysanthemum positively regulates shoot branching, lateral root, and drought tolerance. Plant Cell Rep. 37:1049-1060. https://doi.org/10.1007/s00299-018-2290-9
  32. Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R (2017) Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Sci. Adv. 3:e1602785-e1602785. https://doi.org/10.1126/sciadv.1602785
  33. Oda A, Narumi T, Li T, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisamatsu T (2012) CsFTL3, a chrysanthemum FLOWERING LOCUS T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums. J. Exp. Bot. 63:1461-1477. https://doi.org/10.1093/jxb/err387
  34. Poorter H, Fiorani F, Stitt M, Schurr U, Finck A, Gibon Y, Usadel B, Munns R, Atkin OK, et al (2012) The art of growing plants for experimental purposes: a practical guide for the plant biologist. Funct. Plant Biol. 39:821-838 https://doi.org/10.1071/fp12028
  35. Puangkrit T, Narumi-Kawasaki T, Takamura T, Fukai S (2018) Isolation and analysis of the key enzyme genes in the flavonoid biosynthesis pathway in chrysanthemum. In, Ed 1208. Intern. Soc. Hortic. Sci. (ISHS), Leuven, Belgium, pp 53-60. https://doi.org/10.17660/ActaHortic.2018.1208.8
  36. Qi S, Yang L, Wen X, Hong Y, Song X, Zhang M, Dai S (2016) Reference gene selection for RT-qPCR analysis of flower development in Chrysanthemum morifolium and Chrysanthemum lavandulifolium. Front. Plant Sci. 7:287-287. https://doi.org/10.3389/fpls.2016.00287
  37. Qi Y, Liu Y, Zhang Z, Gao J, Guan Z, Fang W, Chen S, Chen F, Jiang J (2018) The over-expression of a chrysanthemum gene encoding an RNA polymerase II CTD phosphatase-like 1 enzyme enhances tolerance to heat stress. Hortic. Res. 5:37-37. https://doi.org/10.1038/s41438-018-0037-y
  38. Saracco P, Bosco D, Veratti F, Marzachi C (2005) Quantification over time of chrysanthemum yellows phytoplasma (16Sr-I) in leaves and roots of the host plant Chrysanthemum carinatum (Schousboe) following inoculation with its insect vector. Physiol. Mol. Plant Pathol. 67:212-219. https://doi.org/10.1016/j.pmpp.2006.02.001
  39. Sasaki K, Mitsuda N, Nashima K, Kishimoto K, Katayose Y, Kanamori H, Ohmiya A (2017) Generation of expressed sequence tags for discovery of genes responsible for floral traits of Chrysanthemum morifolium by next-generation sequencing technology. BMC Genom. 18:683. https://doi.org/10.1186/s12864-017-4061-3
  40. Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC (2004) Identification and characterization of four Chrysanthemum MADS-Box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol. 134:1632. https://doi.org/10.1104/pp.103.036665
  41. Song A, Gao T, Li P, Chen S, Guan Z, Wu D, Xin J, Fan Q, Zhao K, et al (2016a) Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium. Front. Plant Sci. 7. https://doi.org/10.3389/fpls.2016.00199
  42. Song A, Gao T, Wu D, Xin J, Chen S, Guan Z, Wang H, Jin L, Chen F (2016b) Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors. Plant Physiol. Biochem. 102:10-16. https://doi.org/10.1016/j.plaphy.2016.02.009
  43. Song A, Wang L, Chen S, Jiang J, Guan Z, Li P, Chen F (2015) Identification of nitrogen starvation-responsive microRNAs in Chrysanthemum nankingense. Plant Physiol. Biochem. 91:41-48. https://doi.org/10.1016/j.plaphy.2015.04.003
  44. Song C, Liu Y, Song A, Dong G, Zhao H, Sun W, Ramakrishnan S, Wang Y, Wang S, et al (2018) The Chrysanthemum nankingense genome provides insights into the evolution and diversification of Chrysanthemum flowers and medicinal traits. Mol. Plant 11:1482-1491. https://doi.org/10.1016/j.molp.2018.10.003
  45. Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F (2019) Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic. Res. 6:109. https://doi.org/10.1038/s41438-019-0193-8
  46. Sun C-H, Yu J-Q, Duan X, Wang J-H, Zhang Q-Y, Gu K-D, Hu D-G, Zheng C-S (2018) The MADS transcription factor CmANR1 positively modulates root system development by directly regulating CmPIN2 in chrysanthemum. Hortic. Res. 5:52-52. https://doi.org/10.1038/s41438-018-0061-y
  47. Takino H, Kitajima S, Hirano S, Oka M, Matsuura T, Ikeda Y, Kojima M, Takebayashi Y, Sakakibara H, et al (2019) Global transcriptome analyses reveal that infection with chrysanthemum stunt viroid (CSVd) affects gene expression profile of chrysanthemum plants, but the genes involved in plant hormone metabolism and signaling may not be silencing target of CSVd-siRNAs. Plant Gene 18:100181. https://doi.org/10.1016/j.plgene.2019.100181
  48. Teixeira da Silva JA, Shinoyama H, Aida R, Matsushita Y, Raj SK, Chen F (2013) Chrysanthemum biotechnology: Quo vadis? Crit. Rev. Plant Sci. 32:21-52. https://doi.org/10.1080/07352689.2012.696461
  49. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818. https://doi.org/10.1126/science.1183700
  50. Valles J, Canela MA, Garcia S, Hidalgo O, Pellicer J, SanchezJimenez I, Siljak-Yakovlev S, Vitales D, Garnatje T (2013) Genome size variation and evolution in the family Asteraceae. Caryologia 66:221-235. https://doi.org/10.1080/00087114.2013.829690
  51. Wang H, Jiang J, Chen S, Fang W, Guan Z, Liao Y, Chen F (2013a) Rapid genomic and transcriptomic alterations induced by wide hybridization: Chrysanthemum nankingense×Tanacetum vulgare and C. crassum×Crossostephium chinense (Asteraceae). BMC Genom. 14:902. https://doi.org/10.1186/1471-2164-14-902
  52. Wang H, Jiang J, Chen S, Qi X, Peng H, Li P, Song A, Guan Z, Fang W, et al (2013b) Next-generation sequencing of the Chrysanthemum nankingense (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. Plos One 8:e62293-e62293. https://doi.org/10.1371/journal.pone.0062293
  53. Wang J, Guan Y, Ding L, Li P, Zhao W, Jiang J, Chen S, Chen F (2019a) The CmTCP20 gene regulates petal elongation growth in Chrysanthemum morifolium. Plant Sci. 280:248-257. https://doi.org/10.1016/j.plantsci.2018.12.008
  54. Wang K, Bai Z-Y, Liang Q-Y, Liu Q-L, Zhang L, Pan Y-Z, Liu G-L, Jiang B-B, Zhang F, et al (2018a) Transcriptome analysis of chrysanthemum (Dendranthema grandiflorum) in response to low temperature stress. BMC Genom. 19:319-319. https://doi.org/10.1186/s12864-018-4706-x
  55. Wang K, Wu Y-H, Tian X-Q, Bai Z-Y, Liang Q-Y, Liu Q-L, Pan Y-Z, Zhang L, Jiang B-B (2017) Overexpression of DgWRKY4 enhances salt tolerance in Chrysanthemum seedlings. Front. Plant Sci. 8:1592-1592. https://doi.org/10.3389/fpls.2017.01592
  56. Wang S, Song Q, Li S, Hu Z, Dong G, Song C, Huang H, Liu Y (2018b) Assembly of a complete mitogenome of Chrysanthemum nankingense using Oxford nanopore long reads and the diversity and evolution of Asteraceae mitogenomes. Genes (Basel) 9. https://doi.org/10.3390/genes9110547
  57. Wang S, Zhang C, Zhao J, Li R, Lv J (2019b) Expression analysis of four pseudo-response regulator (PRR) genes in Chrysanthemum morifolium under different photoperiods. PeerJ 7:e6420. https://doi.org/10.7717/peerj.6420
  58. Wang Y, Huang H, Ma Y-P, Jianxin F, Wang L, Dai S (2014) Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: Analysis of gene expression patterns in floral bud emergence. Plant Cell 116. https://doi.org/10.1007/s11240-013-0404-1
  59. Wei Q, Ma C, Xu Y, Wang T, Chen Y, Lu J, Zhang L, Jiang C-Z, Hong B, et al (2017) Control of chrysanthemum flowering through integration with an aging pathway. Nat. Commun. 8:829-829. https://doi.org/10.1038/s41467-017-00812-0
  60. Xia Y, Hu Z, Li X, Wang P, Zhang X, Li Q, Lu C (2016) The complete chloroplast genome sequence of Chrysanthemum indicum. Mitochondrial DNA Part A 27:4668-4669. https://doi.org/10.3109/19401736.2015.1106494
  61. Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genom. 14:662. https://doi.org/10.1186/1471-2164-14-662
  62. Yagi M (2018) Recent progress in whole genome sequencing, high-density linkage maps, and genomic databases of ornamental plants. Breed. Sci. 68:62-70. https://doi.org/10.1270/jsbbs.17080
  63. Yang Y, Ma C, Xu Y, Wei Q, Imtiaz M, Lan H, Gao S, Cheng L, Wang M, et al (2014) A Zinc finger protein regulates flowering time and abiotic stress tolerance in Chrysanthemum by modulating gibberellin biosynthesis. The Plant Cell 26: 2038-2054. https://doi.org/10.1105/tpc.114.124867
  64. Yeong TJ, Pin Jern K, Yao LK, Hannan MA, Hoon STG (2019) Applications of photonics in agriculture sector: A review. Molecules (Basel, Switzerland) 24:2025. https://doi.org/10.3390/molecules24102025
  65. Yue J, Zhu C, Zhou Y, Niu X, Miao M, Tang X, Chen F, Zhao W, Liu Y (2018) Transcriptome analysis of differentially expressed unigenes involved in flavonoid biosynthesis during flower development of Chrysanthemum morifolium 'Chuju'. Sci. Rep. 8:13414-13414. https://doi.org/10.1038/s41598-018-31831-6
  66. Zhang F, Dong W, Huang L, Song A, Wang H, Fang W, Chen F, Teng N (2015) Identification of microRNAs and their targets associated with embryo abortion during Chrysanthemum cross breeding via high-throughput sequencing. Plos One 10:e0124371. https://doi.org/10.1371/journal.pone.0124371
  67. Zhang F, Zhao J, Xu S, Fang W, Chen F, Teng N (2017) MicroRNA and putative target discoveries in Chrysanthemum polyploidy breeding. Int. J. Genomics 2017:6790478-6790478. https://doi.org/10.1155/2017/6790478