• Title/Summary/Keyword: plane waves

Search Result 305, Processing Time 0.032 seconds

The effect of rotation on piezo-thermoelastic medium using different theories

  • Othman, Mohamed I.A.;Ahmed, Ethar A.A.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.649-665
    • /
    • 2015
  • The present paper attempts to investigate the propagation of plane waves in generalized piezo-thermoelastic medium under the effect of rotation. The normal mode analysis is used to obtain the expressions for the displacement components, the temperature, the stress and the strain components. Comparisons are made with the results predicted by different theories (Coupled theory, Lord-Schulman, Green-Lindsay) in the absence and presence of rotation.

Backscattering of TE Waves by Periodical Surfaces filled with Multiple Dielectric Layers (다층 유전체로 채워진 주기 구조에 의한 TE파의 후방 산란)

  • 손형석;박대우;송충호;이상설
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.211-214
    • /
    • 1999
  • Periodical surfaces with the sawtooth profile are studied on their backscattering by the TE plane wave incident. The backscattering is calculated by the mode-matching method. The surfaces are perfect conductor and are covered with dielectric materials to make a flat surface. It is observed that a cover filled with multiple dielectric layers can be used to reduce the backscattering at an arbitrary incident angle.

  • PDF

An Efficient Method to Obtain MCF in Millimeter Wave Systems

  • Lee, Jong-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.3A
    • /
    • pp.151-156
    • /
    • 2003
  • Millimeter waves are potentially useful for high resolution ranging and imaging in low optical visibility conditions such as fog and smoke. Also, They can be used for wide band communications since the currently used spectrum bands are already crowded. However, it is necessary to develop a theoretical and experimental understanding of millimeter wave propagation to assess the performance of millimeter wave systems. The intensity fluctuations and mutual coherence function (MCF) describe atmospheric effects on the millimeter wave propagation. Using the quasi-optical method (QOM), a practical and efficient method is suggested to obtain MCF from the flux measurement in the antenna focal plane.

An Examination on the Singularoty of Grad Moment Equation for Shock Wave Problems

  • 오영기
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.385-390
    • /
    • 1996
  • It has been well known that the Grad thirteen-moment equations have solutions only when the Mach number is less than a limiting value for the stationary plane shock-waves. The limit of Mach number has been re-examined by including successive terms in the series expansion of distribution function. The method employed is the linear analysis of moment equations near up-streaming and down-streaming flows. For the thirteen moment case, it has been confirmed that equations have solutions only when the Mach number is less than 1.6503, which is consistent with the literature value. For the case of twenty moments, the limit of Mach number is decreased to 1.3416.

An Axisymmetrical Dock in Waves

  • Isshiki, H.;Hwang, J.H.
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.13 no.2
    • /
    • pp.1-12
    • /
    • 1976
  • Linearized motions of as axisymmetrical dock freely floating in a regular plane wave are discussed. An extension of the Bessho variational principle(Bessho[3]) is derived to obtain a numerical procedure for a solution of the boundary value problem associated with the fluid motion. The added mass and the damping coefficients for a circular dock in vertical(heave) and horizontal(surge) oscillations are evaluated numerically, and the resulte seems to be satisfactory.

  • PDF

A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field

  • Said, Samia M.
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.159-166
    • /
    • 2022
  • The model of two-dimensional plane waves is analyzed in a micropolar-thermoelastic solid with microtemperatures in the context of the three-phase-lag model, dual-phase-lag model, and the Green-Naghdi theory of type III. Harmonic wave analysis is used to hold the solution to the problem. Numerical results of the physical fields are visualized to show the effects of the gravity field, magnetic field, and viscosity. The expression for the field variables is obtained generally and represented graphically for a particular medium.

Numerical Investigation of Scattering from a Surface Dielectric Barrier Discharge Actuator under Atmospheric Pressure

  • Kim, Yuna;Kim, Sangin;Kim, Doo-Soo;Oh, Il-Young;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.52-57
    • /
    • 2018
  • Surface dielectric barrier discharge (SDBD), which is widely used to control turbulence in aerodynamics, has a significant effect on the radar cross-section (RCS). A four-way linearly synthesized SDBD air plasma actuator is designed to bolster the plasma effects on electromagnetic waves. The diffraction angle is calculated to predict the RCS because of the periodic structure of staggered electrodes. The simplified plasma modeling is utilized to calculate the inhomogeneous surface plasma distribution. Monostatic RCS shows the diffraction in the plane perpendicular to the electrode array and the notable distortion by plasma. In comparison, the overall pattern is maintained in the parallel plane with minor plasma effects. The trends also appear in the bistatic RCS, which has a significant difference in the observation plane perpendicular to the electrodes. The peaks by Bragg's diffraction are shown, and the RCS is reduced by 10 dB in a certain range by the plasma effect. The diffraction caused by the actuator and the inhomogeneous air plasma should be considered in designing an SDBD actuator for a wide range of application.

Effect of Change of Numerical Parameters on Outflow Characteristics in the Linear Muskingum-Cunge Method (선형 Muskingum-Cunge 법에서의 수치적 인자의 변화가 유출특성에 미치는 영향)

  • 김진수
    • Water for future
    • /
    • v.29 no.5
    • /
    • pp.139-150
    • /
    • 1996
  • This paper presents the effect of numerical parameters, such as grid size and grid ratio, on the outflow hydrograph of a unit-width plane in the linear Muskingum-Cunge method. The numerical results depend on Courant number C and cell Reynolds number D, two physically and numerically meaningful parameters. As C approache 1 and D increases, the numerical dispersion-relating oscillations are difficult to occur. The numerical oscillations occur in the front of a propagating wave for C < 1, while smaller oscillations occur behind the wave for C > 1 due to the numerical diffusion effect. For a plane with a small value of characteristic reach length L (e.g., a steep plane), the numerical solution of the Muskingum-Cunge method is similar to that of the kinematic wave method, which shows no wave attenuation. However, for a plane with a large value of L (e.g., a mild plane), the Muskingum-Cunge method leads to the diffusion waves which are essentially independent of the Courant number. Accordingly, the Muskingum-Cunge method will be suited for the routing of the catchment with relatively mild slopes.

  • PDF

Effect of a Finite Substrate Size on the Radiation Characteristics of Two-Element Linear E-plane Array Antennas (유한한 기판 크기가 2소자 E-평면 선형 배열 안테나의 방사 특성에 미치는 영향)

  • Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.95-110
    • /
    • 2012
  • The effect of a finite substrate size on the radiation characteristics of a two-element linear E-plane array antenna using microstrip patch antennas is investigated. The average active element pattern characteristics of two-element E-plane array antennas printed on different dielectric constant substrates with various substrate sizes and element spacings are analyzed. Using the average active element pattern, the radiation pattern characteristics of the array antenna versus scan angle is analyzed. The simulation results show that the diffracted fields of surface waves from substrate edges have a significant effect on the radiation characteristics of a 2-element E-plane array antenna. The distance between the center of patch antenna and the substrate edges on the E-plane for the enhancement of radiation characteristics of the array antenna is about $0.35{\lambda}_0$.

Finite Element Modeling for the Analysis of In- and Out-of-plane Bulk Elastic Wave Propagation in Piezoelectric Band Gap Structures (압전 밴드 갭 구조물의 면내·외 방향 체적 탄성파 전파 특성 해석을 위한 유한요소 모델링)

  • Kim, Jae-Eun;Kim, Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.957-964
    • /
    • 2011
  • This investigation presents a finite element method to obtain the transmission properties of bulk elastic waves in piezoelectric band gap structures(phonon crystals) for varying frequencies and modes. To this end, periodic boundary conditions are imposed on a three-dimensional model while both in-plane and out-of-plane modes are included. In particular, the mode decoupling characteristics between in-plane and out-of-plane modes are identified for each electric poling direction and the results are incorporated in the finite element modeling. Through numerical simulations, the proposed modeling method was found to be a useful, effective one for analyzing the wave characteristics of various types of piezoelectric phononic band gap structures.