Browse > Article
http://dx.doi.org/10.3795/KSME-A.2011.35.8.957

Finite Element Modeling for the Analysis of In- and Out-of-plane Bulk Elastic Wave Propagation in Piezoelectric Band Gap Structures  

Kim, Jae-Eun (Faculty of Mechanical and Automotive Engineering, Catholic Univ. of Daegu)
Kim, Yoon-Young (School of Mechanical and Aerospace Engineering, Seoul Nat'l Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.35, no.8, 2011 , pp. 957-964 More about this Journal
Abstract
This investigation presents a finite element method to obtain the transmission properties of bulk elastic waves in piezoelectric band gap structures(phonon crystals) for varying frequencies and modes. To this end, periodic boundary conditions are imposed on a three-dimensional model while both in-plane and out-of-plane modes are included. In particular, the mode decoupling characteristics between in-plane and out-of-plane modes are identified for each electric poling direction and the results are incorporated in the finite element modeling. Through numerical simulations, the proposed modeling method was found to be a useful, effective one for analyzing the wave characteristics of various types of piezoelectric phononic band gap structures.
Keywords
Band Gap; Bulk Elastic Wave; Piezoeletric; Phononic Crystal; Finite Element Method;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 IEEE Standards Board, 1987, IEEE Standard on Piezoelectricity, IEEE, New York.
2 Lerch, R.,1990, "Simulation of Piezoelectric Devices by Two-and Three-Dimensional Finite Elements," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 37, pp. 233-247.   DOI   ScienceOn
3 Brillouin, L., 1946, Wave Propagation in Periodic Structures, McGraw-Hill Book Company, New York.
4 Kushwaha, M. S., Halevi, P., Dobrzynski, L. and Djafari-Rouhani, B., 1993, "Acoustic Band Structure of Periodic Elastic Composites," Phys. Rev. Lett. B, Vol. 71, No. 13, pp. 2022-2025.   DOI   ScienceOn
5 Sigmund, O., Jensen, J. S., 2003, "Systematic Design of Phononic Band-Gap Materials and Structures by Topology Optimization," Phil. Trans. R. Soc. Lond. A, Vol. 361, pp. 1001-1009.   DOI   ScienceOn
6 Pennec, Y., Djafari-Rouhani, B., Larabi, H., Vasseur, J. and Hladky-Hennion, A-C., 2009, "Phononic Crystals and Manipulation of Sound," Phys. Status Solidi C., Vol. 6, No. 9, 2080-2085.   DOI
7 Armenise, M. N., Campanella, C. E., Ciminelli, C., Dell'Olio, F. and Passaro, V. M. N., 2010, "Phononic and Photonic Band Gap Structures: Modeling and Applications," Physics Procedia, Vol. 3, No. 1, pp. 357-364.   DOI   ScienceOn
8 Solymar, L. and Shamonina, E., 2009, Waves in Metamaterials, Oxford University Press, New York.
9 Kim, J. E., Kim, D. S., Ma, P. S. and Kim, Y. Y., 2010, "Multi-Physics Interpolation for the Topology Optimization of Piezoelectric Systems," Comput. Methods Appl. Mech. Engrg., Vol. 199, pp. 3153-3168.   DOI   ScienceOn
10 Ewins, D. J., 2000, Modal Testing: Theory, Practice and Application, Research Studies Press Ltd., England.
11 Ha, Y. and Cho, S., 2006, "Design Sensitivity Analysis and Topology Optimization of Eigenvalue Problems for Piezoelectric Resonators," Smart Mater. Struct., Vol. 15, 1513-1524.   DOI   ScienceOn
12 Kafesaki, M., 1999, "Multiple-Scattering Theory for Three-Dimensional Periodic Acoustic Composites," Phys. Rev. B, Vol. 60, pp. 993-1001.
13 Hou, Z., Wu, F. and Liu, Y., 2004, "Phononic Crystals Containing Piezoelectric Material," Solid State Commun. Vol. 130, pp. 745-749.   DOI   ScienceOn
14 Wang, Y., Li, F., Wang, Y., Kishimoto, K. and Huang, W., 2009, "Tuning of Band Gaps for a Two-Dimensional Piezoelectric Phononic Crystal with a Rectangular Lattice," Acta. Mech. Sin., Vol. 25, pp. 65-71.   DOI
15 Robillard, J.-F., Matar, O. B., Vasseur, J. O., Deymier, P. A., Stippinger, M., Hladky-Hennion, A.-C., Pennec, Y. and Djafari-Rouhani, B., 2009, "Tunable Magnetoelastic Phononic Crystals, " Appl. Phys. Lett., Vol. 95, 124104.   DOI   ScienceOn
16 Vasseur, J. O., Deymier, P. A., Djafari-Rouhani, B., Pennec, Y. and Hladky-Hennion, A.-C., "Absolute Forbidden Bands and Waveguiding in Two-Dimensional Phononic Crystal Plates," Phys. Rev. B, Vol. 77, 085415.   DOI   ScienceOn
17 Wilm, M., Ballandras, S., Laude, V. and Pastureaud, T., 2002, "A Full 3D Plane-Wave-Expansion Model for 1-3 Piezoelectric Composite Structures," J. Acoust. Soc. Am., Vol. 112, No. 3, pp. 943-952.   DOI   ScienceOn
18 Garcia-Pablos, D., Sigalas, M., Montero de Espinosa, F. R., Torres, M., Kafesaki, M. and Garcia, N., 2000, "Theory and Experiments on Elastic Band Gaps," Phys. Rev. Lett., Vol. 84, No. 19, pp. 4349-4352.   DOI   ScienceOn
19 Hou, Z. and Fu, X., 2004, "Calculation Method to Study the Transmission Properties of Phononic Crystals," Phys. Rev. B, Vol. 70, 014304.   DOI   ScienceOn
20 Langlet, P., Hladky-Hennion, A-C. and Decarpigny, J-N., 1995, "Analysis of the Propagation of Plane Acoustic Waves in Passive Periodic Materials Using the Finite Element Method," J. Acoust. Soc. Am., Vol. 98, No. 5, pp. 2792-2800.   DOI   ScienceOn
21 Aberg, M. and Gudmundson, P., 1997, "The Usage of Standard Finite Element Codes for Computation of Dispersion Relations in Materials with Periodic Microstructure," J. Acoust. Soc. Am., Vol. 102, No. 4, pp. 2007-2013.   DOI   ScienceOn