Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.2.159

A viscoelastic-micropolar solid with voids and microtemperatures under the effect of the gravity field  

Said, Samia M. (Department of Mathematics, Faculty of Science, Zagazig University)
Publication Information
Geomechanics and Engineering / v.31, no.2, 2022 , pp. 159-166 More about this Journal
Abstract
The model of two-dimensional plane waves is analyzed in a micropolar-thermoelastic solid with microtemperatures in the context of the three-phase-lag model, dual-phase-lag model, and the Green-Naghdi theory of type III. Harmonic wave analysis is used to hold the solution to the problem. Numerical results of the physical fields are visualized to show the effects of the gravity field, magnetic field, and viscosity. The expression for the field variables is obtained generally and represented graphically for a particular medium.
Keywords
a micropolar; initial stress; microtemperatures; viscoelastic-thermoelastic;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Iesan, D. and Quintanilla, R. (2000), "On a theory of thermoelasticity with microtemperatures", J. Therm. Stress., 23(3), 199-215. https://doi.org/10.1080/014957300280407.   DOI
2 Kakar, R. and Kakar, S. (2014), "Electro-magneto-thermoelastic surface waves in non-homogeneous orthotropic granular half space", Geomech. Eng., 7(1),1-36. https://doi.org/10.12989/gae.2014.7.1.001.   DOI
3 Kumar, R. and Rani, L. (2006), "Deformation due to moving loads in thermoelastic body with voids", Int. J. Appl. Mech. Eng., 11(1), 37-59. http://content.sciendo.com/view/journals/ijame/ijame- overview.xml.
4 Kumar, A., Kumar, R. and Abo-Dahab, S.M. (2017), "Mathematical model for Rayleigh waves in microstretch thermoelastic medium with microtemperatures", J. Appl. Sci. Eng., 20(2), 149-156. https://doi.org/10.6180/jase.2017.20.2.02.   DOI
5 Marin, M. (1997), "On the domain of influence in thermoelasticity of bodies with voids", Arch. Math. (Brno)., 33(4), 301-308. http://dml.cz/dmlcz/107618.   DOI
6 Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S.M. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Comm. Nonlinear Sci. Numer. Simul., 14(4), 1385-1395. https:// doi.org/10.1016/j.cnsns.2008.04.006.   DOI
7 Montanaro, A. (1999), "On singular surfaces in isotropic linear thermoelasticity with initial stress", J. Acoust. Soc. Am., 106(3), 1586-1588. https://doi.org/10.1121/1.427154.   DOI
8 Chirila, A. and Marin, M. (2019), "Diffusion in microstretch thermoelasticity with microtemperatures and microconcentrations". (Eds., Flaut, C., Hoskova-Mayerova, S. and Flaut, D.), Models and Theories in Social Systems. Studies in Systems, Decision and Control. 179, 149-164. https://doi.org/ 10.1007/978-3-030-00084-4_8.   DOI
9 Choudhuri, S.K.R. (2007), "On a thermoelastic three-phase-lag model", J.Therm. Stress., 30(3), 231-238. https://doi.org/10.1080/01495730601130919.   DOI
10 Cosserat, E. and Cosserat, F. (1909), "Theorie des Corps Deformables", A Hermann et Fils, Paris. 81, 67. https://doi.org/10.1038/081067a0.   DOI
11 Cowin, S.C. and Nunziato, J.W. (1973), "Linear elastic materials with voids", J. Elast., 13, 125-147. https://doi.org/10.1007/BF00041230.   DOI
12 Eringen, A.C. (1966), "Linear theory of micropolar elasticity", J. Math. Mech., 15(6), 909-923. https://www.jstor.org/stable/24901442.
13 Goodman, M.A. and Cowin, S.C. (1972), "A continuum theory for granular material", Arch. Rational Mech. Anal., 44, 249-266. https://doi.org/10.1007/BF00284326.   DOI
14 Abbas, I.A. (2014a), "Fractional order GN model on thermoelastic interaction in an infinite fibre-reinforced anisotropic plate containing a circular hole", J. Comput. Theor. Nanosci., 11(2), 380-384. https://doi.org/10.1166/jctn.2014.3363.   DOI
15 Hobiny, A.D. and Abbas, I.A. (2018), "Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source", Int. J. Heat Mass Transfer., 124, 1011-1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018.   DOI
16 Hobiny, A.D. and Abbas, I.A. (2020), "Fractional order thermoelastic wave assessment in a two-dimension medium with voids", Geomech. Eng., 21(1), 85-93. https://doi.org/10.12989/gae.2020.21.1.085.   DOI
17 Hobiny, A., Alzahrani, F., Abbas, I. and Marin, M. (2020), "The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation", Symmetry 12 (4), 602. https://doi.org/10.3390/sym12040602.   DOI
18 Abbas, I.A. (2011a), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana, 36(3), 411-423. https://doi.org/10.1007/s12046-011-0025-5.   DOI
19 Abo-Dahab, S.M. and Abbas, I.A. (2011b), "LS model on thermal shock problem of generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", Appl. Math. Model., 35(8), 3759-3768. https://doi.org/10.1016/j.apm.2011.02.028.   DOI
20 Said, S.M. (2020), "The effect of mechanical strip load on a magneto-micropolar thermoelastic medium: Comparison of four different theories", Mech. Res. Com., 107, 103549. https://doi.org/10.1016/j.mechrescom.2020.103549.   DOI
21 Abbas, I.A. and Abo-Dahab, S.M. (2014c), "On the numerical solution of thermal shock problem for generalized magneto-thermoelasticity for an infinitely long annular cylinder with variable thermal conductivity", J. Comput. Theor. Nanosci., 11(3), 607-618. https://doi.org/10.1166/jctn.2014.3402.   DOI
22 Said, S.M., Abd-Elaziz, El. M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.   DOI
23 Sarkar, N. and Tomar, S.K. (2019), "Plane waves in nonlocal thermoelastic solid with voids", J. Therm. Stress., 42(5), 580-606. https://doi.org/10.1080/01495739.2018.1554395.   DOI
24 Abbas, I.A. (2014 b), "Three-phase lag model on thermoelastic interaction in an unbounded fiber-reinforced anisotropic medium with a cylindrical cavity", J. Comput. Theor. Nanosci., 11(4), 987-992. https://doi.org/10.1166/jctn.2014.3454.   DOI
25 Abbas, I.A. (2015), "Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity", Appl. Math. Model., 39(20), 6196-6206. https://doi.org/10.1016/j.apm.2015.01.065.   DOI
26 Aouadi, M. (2008), "Some theorems in the isotropic theory of microstretch thermoelasticitywith microtemperatures", J. Therm. Stress., 31(7), 649-662. https://doi.org/10.1080/01495730801981772.   DOI
27 Bhatti, M.M., Marin, M., Zeeshan, A. and Abdelsalam, S.I. (2020), "Editorial: recent trends in computational fluid dynamics", Front Phys., 8, 593111. https://doi.org/ 10.3389/fphy.2020.593111.   DOI
28 Saci, M. and Djebabla, A. (2020), "On the stability of linear porous elastic materials with microtemperatures effects", J. Therm. Stress., 43(10), 1300-1315. https://doi.org/10.1080/01495739.2020.1779629.   DOI
29 Othman, M.I.A., Alharbi, A.M. and Al-Autabi, AL.M.Kh. (2020), "Micropolar thermoelastic medium with voids under the effect of rotation concerned with 3PHL model", Geomechan. Eng., 21(5), 447-459. https://doi.org/10.12989/gae.2020.21.5.447.   DOI
30 Quintanilla, R. and Racke, R. (2008), "A note on stability in three-phase-lag heat conduction", Int. J. Heat Mass Transfer., 51(1-2), 24-29. https://doi.org/10.1016/j.ijheatmasstransfer.2007.04.045.   DOI