• 제목/요약/키워드: planar graph

검색결과 62건 처리시간 0.033초

SOME RESULTS ON TOTAL COLORINGS OF PLANAR GRAPHS

  • Hou, Jianfeng;Liu, Guizhen;Xin, Yongxun;Lan, Mei
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.511-517
    • /
    • 2008
  • Let G be a planar graph. It is proved that if G does not contain a k-cycle with a chord for some k ${\ni}$ {4,5,6}, then G is total-($\Delta(G)+2$)-colorable.

  • PDF

CHARACTERIZATION THEOREMS AND 4-ORDERABILITY ON INFINITE MAXIMAL PLANAR GRAPHS

  • Jung Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.577-587
    • /
    • 2006
  • We present several properties concerning infinite maximal planar graphs. Results related to the infinite VAP-free planar graphs are also included. Finally, we extend the result of W. Goddard, who showed that every finite 4-connected maximal planar graph is 4-ordered, to infinite strong triangulations.

TOTAL COLORINGS OF PLANAR GRAPHS WITH MAXIMUM DEGREE AT LEAST 7 AND WITHOUT ADJACENT 5-CYCLES

  • Tan, Xiang
    • 대한수학회보
    • /
    • 제53권1호
    • /
    • pp.139-151
    • /
    • 2016
  • A k-total-coloring of a graph G is a coloring of $V{\cup}E$ using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number ${\chi}^{{\prime}{\prime}}(G)$ of G is the smallest integer k such that G has a k-total-coloring. Let G be a planar graph with maximum degree ${\Delta}$. In this paper, it's proved that if ${\Delta}{\geq}7$ and G does not contain adjacent 5-cycles, then the total chromatic number ${\chi}^{{\prime}{\prime}}(G)$ is ${\Delta}+1$.

Polytope와 graph에 관하여 (On polytopes and graphs)

  • 김연식
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제10권2호
    • /
    • pp.4-8
    • /
    • 1972
  • We consider the class (equation omitted) of all k-degenerate graphs, for k a non-negative integer. The class (equation omitted) and (equation omitted) are exactly the classes of totally disconnected graphs and of forests, respectively; the classes (equation omitted) and (equation omitted) properly contain all outerplanar and planar graphs respectively. The advantage of this view point is that many of the known results for chromatic number and point arboricity have natural extensions, for all larger values of k. The purpose of this note is to show that a graph G is (P$^3$)-realizable if G is planar and 3-degenerate.

  • PDF

MINIMAL GRAPHS WITH PLANAR ENDS

  • Jin, Sun Sook
    • 충청수학회지
    • /
    • 제24권2호
    • /
    • pp.313-317
    • /
    • 2011
  • In this article, we consider an unbounded minimal graph $M{\subset}R^3$ which is contained in a slab. Assume that ${\partial}M$ consists of two Jordan curves lying in parallel planes, which is symmetric with the reflection under a plane. If the asymptotic behavior of M is also symmetric in some sense, then we prove that the minimal graph is itself symmetric along the same plane.

PLANE EMBEDDING PROBLEMS AND A THEOREM FOR INFINITE MAXIMAL PLANAR GRAPHS

  • JUNG HWAN OK
    • Journal of applied mathematics & informatics
    • /
    • 제17권1_2_3호
    • /
    • pp.643-651
    • /
    • 2005
  • In the first part of this paper we investigate several statements concerning infinite maximal planar graphs which are equivalent in finite case. In the second one, for a given induced $\theta$-path (a finite induced path whose endvertices are adjacent to a vertex of infinite degree) in a 4-connected VAP-free maximal planar graph containing a vertex of infinite degree, a new $\theta$-path is constructed such that the resulting fan is tight.

Motion planning with planar geometric models

  • Kim, Myung-Doo;Moon, Sang-Ryong;Lee, Kwan-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.996-1003
    • /
    • 1990
  • We present algebraic algorithms for collision-avoidance robot motion planning problems with planar geometric models. By decomposing the collision-free space into horizontal vertex visibility cells and connecting these cells into a connectivity graph, we represent the global topological structure of collision-free space. Using the C-space obstacle boundaries and this connectivity graph we generate exact (non-heuristic) compliant and gross motion paths of planar curved objects moving with a fixed orientation amidst similar obstacles. The gross motion planning algorithm is further extended (though using approximations) to the case of objects moving with both translational and rotational degrees of freedom by taking slices of the overall orientations into finite segments.

  • PDF

THE LINEAR 2-ARBORICITY OF PLANAR GRAPHS WITHOUT ADJACENT SHORT CYCLES

  • Chen, Hong-Yu;Tan, Xiang;Wu, Jian-Liang
    • 대한수학회보
    • /
    • 제49권1호
    • /
    • pp.145-154
    • /
    • 2012
  • Let G be a planar graph with maximum degree $\Delta$. The linear 2-arboricity $la_2$(G) of G is the least integer k such that G can be partitioned into k edge-disjoint forests, whose component trees are paths of length at most 2. In this paper, we prove that (1) $la_2(G){\leq}{\lceil}\frac{\Delta}{2}\rceil+8$ if G has no adjacent 3-cycles; (2) $la_2(G){\leq}{\lceil}\frac{\Delta}{2}\rceil+10$ if G has no adjacent 4-cycles; (3) $la_2(G){\leq}{\lceil}\frac{\Delta}{2}\rceil+6$ if any 3-cycle is not adjacent to a 4-cycle of G.

ON THE DOMINATION NUMBER OF A GRAPH AND ITS SQUARE GRAPH

  • Murugan, E.;Joseph, J. Paulraj
    • Korean Journal of Mathematics
    • /
    • 제30권2호
    • /
    • pp.391-402
    • /
    • 2022
  • For a given graph G = (V, E), a dominating set is a subset V' of the vertex set V so that each vertex in V \ V' is adjacent to a vertex in V'. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by γ(G). For an integer k ≥ 1, the k-th power Gk of a graph G with V (Gk) = V (G) for which uv ∈ E(Gk) if and only if 1 ≤ dG(u, v) ≤ k. Note that G2 is the square graph of a graph G. In this paper, we obtain some tight bounds for the sum of the domination numbers of a graph and its square graph in terms of the order, order and size, and maximum degree of the graph G. Also, we characterize such extremal graphs.

ON THE ANNIHILATOR GRAPH OF GROUP RINGS

  • Afkhami, Mojgan;Khashyarmanesh, Kazem;Salehifar, Sepideh
    • 대한수학회보
    • /
    • 제54권1호
    • /
    • pp.331-342
    • /
    • 2017
  • Let R be a commutative ring with nonzero identity and G be a nontrivial finite group. Also, let Z(R) be the set of zero-divisors of R and, for $a{\in}Z(R)$, let $ann(a)=\{r{\in}R{\mid}ra=0\}$. The annihilator graph of the group ring RG is defined as the graph AG(RG), whose vertex set consists of the set of nonzero zero-divisors, and two distinct vertices x and y are adjacent if and only if $ann(xy){\neq}ann(x){\cup}ann(y)$. In this paper, we study the annihilator graph associated to a group ring RG.