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Abstract

‘We present, algebraic algorithms for collision-avoidance robot motion planning problems with
planar geometric models. By decomposing the collision-free space into horizontal vertez visibilily
cells and connecting these cells into a connectivity graph, we represent the global topological
structure of collision-free space. Using the C-space obstacle boundaries and this connectivity
graph we gencrate exact (non-heuristic) compliant and gross motion paths of planar curved
objects moving with a fixed orientation amidst similar obstacles. The gross motion planning
algorithm is further extended (though using approximations) to the case of objects moving with
both translational and rotational degrees of freedom by taking slices of the overall orientations

into finite segments.

1 Introduction

We consider collision-avoidance robot motion planning problems
for planar robots bounded by algebraic curve segments moving
amidst planar stationary obstacles similarly defined. Though
there have been various algorithms developed for planning robot
motions avoiding collisions with obstacles, most of the results
are limited to the case of polygonal and/or polyhedral moving
objects and obstacles. The general robot motion planning al-
gorithms developed by Schwartz and Sharir {21] and recently
improved by Canny [8] essentially consider point motions in the
C-space (Configuration space} where the C-space obstacles are
represented by semi-algebraic sets. For polygonal and/or poly-
hedral robot motions the algebraic constraints defining the C-
space obstacle boundaries have no singularities on their defining
hyper-surfaces. Each connected component of the C-space ob-
stacles can be represented as a conjunction of the corresponding
algebraic inequalities, i.e., as a semi-algebraic set. However,
for the more general complicated robots bounded by algebraic
curve segments and surface patches, it is not easy to represent
the C-space obstacles in terms of semi-algebraic sets even for
the simple translatory motions with fixed orientations. This is
because the corresponding C-space obstacle boundaries usually
have very high degree curves and surfaces. Thus, there may
occur very complicated singularities on the boundary. Repre-
senting these complicated algebraic varieties with singularities
as semi-algebraic sets is still a difficult open problem due to the
current status of geometric modeling research. Thus, we rep-
resent the C-space obstacles in boundary representations and
develop appropriate motion planning algorithms for them. We
assume the previous algorithms to generate the C-space obsta-
cles in boundary representations for both moving objects and
obstacles bounded by algebraic curves and algebraic surfaces,
[2,3,4], and the object motions restricted to the translatory mo-
tions with fixed orientations.
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Figure 1: Compliant Motion.

For the motions of planar robots with fixed orientations, we
develop ezact algorithms for both compliant and gross motion
plannings. Being ezact means the algorithms we develop are
non-heuristic. The robots are in compliant motions when they
move with continuous contacts with the obstacles, see Figure 1.
This is equivalent to moving the corresponding reference points
along the C-space obstacle boundaries. Thus, each compliant
motion path can be obtained by doing a search from the start
point to the goal point on the graph representing the C-space ob-
stacle boundaries. Note that each connected component of the
C-space obstacles has its boundary representation as a circular
list of algebraic curve segments. For collision-avoidance gross



motion plannings, we first represent the collision-free space effi-
ciently by decomposing the free space into the horizontal vertex
visibility cells (hv-cells) and connecting these cells into a con-
nectivity graph (hv-cells-graph). We can compute this decom-
position by doing a plane sweep over the C-space obstacles, see
[5,6]. This graph has O(n) space complexity and represents a
global topological structure for the collision-free space. We then
locate the start and goal nodes of the hv-cells-graph correspond-
ing to the hv-cells containing the start and goal positions of the
reference point respectively. We do a search on this graph and
construct a connected path from the start node to the goal node.
This path gives a connected sequence of hv-cells along which the
robot can move without collisions with obstacles. The path also
represents a topological structure for the class of collision-free
paths of the robot passing through the channel determined by
this connected sequence of hv-cells. We construct a correspond-
ing sequence of algebraic curve segments imbedded in this chan-
nel and also conunecting the start and the goal points. In the
construction of these curve segments we can take further con-
siderations on the local configurations of the connected hv-cells.
Various heuristic technigques may be applied.

In contrast to the traditional free-space representations us-
ing triangulations of the polygonal C-spaces, we use the hv-
cells decompositions which can casily be constructed by doing
a plane sweep over the C-space obstacles. Triangulating planar
curved geometric models into similar triangular shapes bounded
by three curve segments is not casy in general. Further, the
edge orientations of these triangular cells may not be uniform.
These difficulties and shape irregularities may prohibit efficient
implementations. However, in hv-cells, the edges on the left and
right sides are curve segments from the original C-space obsta-
cle boundaries, and the extra edges added are always horizontal
edges. Thus, it is easy to classify all the possible configurations
of the connections between adjacent hv-cells. To minimize the
number of cells we can take the decompositions only at the y-
extreme vertices, not at every vertex. In this case, the left and
right sides of each hv-cell can be sequences of connected curve
scgments in general. Though with these simplicities and effi-
ciencies of hv-cells, there are also various disadvantages, too.
Due to its strong dependancy on the horizontal direction, many
thin horizontal cells may result. An extreme case is when two
y-extreme vertices have the same y-coordinates and the corre-
sponding hv-cell degencrates into a line segment. However, in
these special cases, it should not be very difficult to take further
considerations on the vertical directions and get around these
difficulties by using some other compatible techniques.

The gross motion planning algorithm is extended (though
using approximations) to the object motions with both trans-
lations and rotations by using the traditional slicing method,
[16,17], which takes finite slices of the overall orientations. For
this extension we use our previous algorithm to compute the ro-
tational sweep volumes of planar geometric models, [12]. Note
that in the slicing method of [16] the rotational sweep volumes of
polygonal moving ob jects, having circular arcs and line segments
on their boundaries, are further approximated by polygons to-
tally enclosing the sweep volumes. With our generalizations to
the curved case, we can directly use the curved rotational sweep
volumes in the C-space obstacle generations. For the polygons
moving with translations and rotations amidst polygonal obsta-
cles, Avnaim, Boissonnat, and Faverjon [1] presents an exact
algorithm to generate the corresponding C-space obstacles with
ruled surface patches on their boundaries. To generate gross
motion paths, they represent the collision-free space as a collec-
tion of triangular prism cells. These prism cells are constructed
using a space-sweep method which sweeps a plane along the 8-
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axis while maintaining the triangulation of polygonal free-space.
The space sweep updates the triangulation whenever a triangle
degenerates into a line segment or any two polygonal regions
merge into a new polygonal region. Since this algorithm uses
various features of polygons, it is not easy to extend this re-
sult to the curved case. The simple structure of hv-cells would
make this generalization easier than using triangular prisms. De-
generacy detection for hv-cells would be easier than triangles
since the degeneracy for hv-cell occurs when two horizontal lines
come to overlap whereas the triangular degeneracy occurs when
any two of the three edges overlap. The high time complexity
O(m®na(mn)) of Avnaim, Boissonnat, and Faverjon [1] seems
due to the difficulties in detecting the degeneracies of the trian-
gles maintained in the space-sweep. One possible way to reduce
this complexity would be to simplify the degeneracy detections
by using simpler cells like hv-cells rather than the triangular
cells for free-space decompositions.

The rest of the paper is as follows. In §2 we review the
previous computational geometry algorithms for planar geomet-
ric models useful in designing efficient motion planning algo-
rithms in this paper. These include the algorithms to compute
the convex hulls and various decompositions of planar geomet-
ric models. In §3 we present various collision-avoidance motion
planning algorithms for planar geometric models. Finally, in §4
we conclude this paper. We implemented these motion planning
algorithms on Symbolics 3650 Lisp Machine and SUN4/330GX
Sparc Station using Common Lisp for the simple planar gecomet-
ric models bounded by circular arcs and line segments. Further
implementations are currently going on using Gaussian Approx-
imations [13] to deal with planar geometric models bounded by
general planar algebraic curve segments.

2 Algorithms for Planar Geometric Mod-
els

We review some of the previous algorithms designed for planar
geometric models. These algorithms are useful in designing ef-
ficient algorithms in later sections. In §2.1-2.2 we review the
algorithms to compute the convex hulls and various decompo-
sitions of planar geometric models. For gross motion planning,
one may compute the C-Space obstacles for the convex hulls of
the moving objects and the obstacles. Alternatively, one may
first decompose the given models into certain primitive pieces
and then apply the C-space obstacle generations on the decom-
posed pieces of object and obstacle pairs. In §2.3 we also con-
sider the Voronoi Diagrams of planar geometric models and de-
rive systems of polynomial equations defining the Voronoi edges.
Under the Euclidean distance function the degrees of Voronoi
edges are extremely high. Thus, it is not plausible to apply the
retraction method of [18] directly to the C-space obstacles. In-
stead, in §3.1 we present how to use the Voronoi Diagrams of
the outer and simple carrier polygons of C-space obstacles to
compute collision-avoidance paths.

2.1 Convex Hulls

The convex hull computation is a fundamental one in compu-
tational geometry. There are numerous applications in which
the convex hulls of complex objects can be used effectively to
make certain geometric decisions easier. For example, a null
intersection between the convex hulls of two objects implies a
null intersection between the original objects. Since intersection
testing for convex objects is easier than for general ob jects, con-
vex hulls intersection is often used as an efficient first test in an
intersection detection algorithm for non-convex objects. Addi-



tional motivation arises from the use of convex hulls for heuristic
collision-free motion planning of general objects among obsta-
cles. Motion planning is easier for convex objects and obstacles,
[3].

Several linear~time algorithms for computing the convex hulls
of simple planar polygons are known, {11,14]. These algorithms
achieve the more efficient O(n) bound whereas the Q(nlogn)
lower bound applies to the general problem of computing the
convex hull of n points in the plane, [19]. By generalizing [11] to
an edge-based algorithm Schiffer and Van Wyk [20] extend the
planar polygon results to a linear-time algorithm for curved ob-
jects bounded by piecewise-smooth Jordan curves. Dobkin and
Souvaine [10] suggests a linear-time convex hull algorithm for
a class of planar curved objects. Bajaj and Kim [5,6] also pro-
posed a simple linear time algorithm for computing the convex
hulls of objects bounded by algebraic curves.

2.2 Decompositions

Most algorithms in computational geometry have been designed
for discrete objects like points, lines, polygons, and polyhedra,
sce [15,19]. Using the splinegon as a generalization of the poly-
gon, Dobkin and Souvaine {10] presents methods for extending
polygonal algorithms to algorithms for splinegons. A splinegonis
a polygon whose edges have been replaced by convex, concave or
linear curve segments, and the carrier polygon of a splinegon is
the polygon connecting adjacent vertices of a splinegon. Dobkin,
Souvaine, and Van Wyk (9] show that the O(nloglog n) time al-
gorithm for the horizontal-vertex-visibility partition of a simple
polygon [22] can easily be generalized to a simple splinegon, and
using this partition they present an algorithm to decompose a
simple splinegon into a union of monotone pieces and further into
a union of differences of unions of possibly overlapping convex
pieces. They also show that simplifying the carrier polygon can
be quite expensive by constructing an n-sided splinegon whose
smallest simple carrier polygon has Q(n?) edges.

Bajaj and Kim [5,6] presented an O(nloglogn + k - d9())
algorithm to compute a simple carrier polygon of planar geo-
metric models, where n is the number of monotone boundary
curve segments and k is the number of edges in the resulting
simple carrier polygon. Further, the worst case upper bound
of k is shown to be the optimal ©(n?). Bajaj and Kim [5,6)
also presented an O(nloglogn + K - d°M) algorithm to con-
struct a simple characteristic carrier polygon of planar curved
object, where K is the minimum number of edges for (possi-
bly non-simple) characteristic carrier polygons of the object, see
Figure 2(a). A carrier polygon is characteristic if it differs from
the original object by convex regions each of which is totally
contained in the interior of the object or in its exterior.

We can also construct within the same time bound O(n loglog n+

K -d°M), an inner polygon (resp. an outer polygon) which is
a simple polygon totally contained in (resp. totally containing)
the object, see Figure 2(b)-2(c). In contrast to the simple carrier
polygon construction, the worst-case upper bound for K can be
arbitrarily large as the inner angle between two adjacent edges
approaches to 0 or 27, however, it is small in practice. K (hence-
forth called the characteristic number) in some sense represents
the shape degeneracy of the object. In the construction of the
characteristic, inner and outer polygons, we assume the object
has no vertex with its inner angle being 0 or 2r. Using these
polygons, we can compute (1) a convex decomposition of the
object as a difference of unions of disjoint convex objects, and
(2) a decomposition of the object as 2 union of disjoint certain
primitive objects.
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Figure 2: (a) Simple Characteristic Polygon. (b) Inner Polygon.
(c} Outer Polygon.

2.3 Voronoi Diagrams of Algebraic Curves

Yap (24] gives an efficient O(nlogn) algorithm to construct the
Voronoi Diagram for a set of points, line segments, and circular
arcs in the plane. The Voronoi edges consist of conic curves in
this case. However, in the Voronoi Diagrams for general alge-
braic curve segments, we may have Voronoi edges of very high
degree algebraic curve segments. In the following, we derive
the algebraic equations of the bisectors for (1) a single algebraic
curve f = 0, and (2) two different irreducible algebraic curves
f = 0and g = 0. By Bezout theorem [23], we can show the
degrees of these bisectors can be as high as O(d*) when f = 0
and g = 0 are of degree d. Since the C-space obstacle boundary
curves can have degree O(d®) for moving objects and obstacles
bounded by degree d algebraic curves, we may have O(d!?) de-
gree curve segments on the corresponding Voronoi Diagrams of
the C-space obstacles. This degree complexity justifies our alter-
native approximation-based approaches to be discussed in §3.1
using the inner and outer polygons of the C-space obstacles.



motion plannings, we first represent the collision-free space effi-
ciently hy decomposing the frec space into the horizontal vertex
visibility cells (hv-cells) and connecting these cells into a con-
nectivity graph (hv-cells-graph). We can compute this decom-
position by doing a plane sweep over the C-space obstacles, see
[5,6]. This graph has O(n) space complexity and represents a
global topological structure for the collision-free space. We then
locate the start and goal nodes of the hv-cells-graph correspond-
ing to the hv-cells containing the start and goal positions of the
reference point respectively. We do a search on this graph and
construct a connected path from the start node to the goal node.
This path gives a connected sequence of hv-cells along which the
robot can move without collisions with obstacles. The path also
represents a topological structure for the class of collision-free
paths of the robot passing through the channel determined by
this connected sequence of hv-cells. We construct a correspond-
ing sequence of algebraic curve segments imbedded in this chan-
nel and also connecting the start and the goal points. In the
construction of these curve segments we can take further con-
siderations on the local configurations of the connected hv-cells.
Various heuristic techniques may be applied.

In contrast to the traditional {ree-space representations us-
ing triangulations of the polygonal C-spaces, we use the hv-
cells decompositions which can easily be constructed by doing
a plane sweep over the (-space obstacles. Triangulating planar
curved geometric models into similar triangular shapes bounded
by three curve segments is not easy in general. Further, the
edge orientations of these triangular cells may not be uniform.
These difficulties and shape irregularities may prohibit efficient
implementations. However, in hv-cells, the edges on the left and
right sides are curve segments from the original C-space obsta-
cle boundarics, and the extra edges added are always horizontal
edges. Thus, it is easy to classify all the possible configurations
of the connections between adjacent hv-cells. To minimize the
number of cells we can take the decompositions only at the y-
extreme vertices, not at every vertex. In this case, the left and
right sides of each hv-cell can be sequences of connected curve
segments in general. Though with these simplicities and effi-
ciencies of hv-cells, there are also various disadvantages, too.
Due to its strong dependancy on the horizontal direction, many
thin horizontal cells may result. An extreme case is when two
y-extreme vertices have the same y-coordinates and the corre-
sponding hv-cell degenerates into a line segment. However, in
these special cases, it should not be very difficult to take further
considerations on the vertical directions and get around these
difficulties by using some other compatible techniques.

The gross motion planning algorithm is extended (though
using approximations) to the object motions with both trans-
lations and rotations by using the traditional slicing method,
[16,17], which takes finite slices of the overall orientations. For
this extension we use our previous algorithm to compute the ro-
tational sweep volumes of planar geometric models, [12]. Note
that in the slicing method of [16] the rotational sweep volumes of
polygonal moving objects, having circular arcs and line segments
on their boundaries, are further approximated by polygons to-
tally enclosing the sweep volumes. With our generalizations to
the curved case, we can directly use the curved rotational sweep
volumes in the C-space obstacle generations. For the polygons
moving with translations and rotations amidst polygonal obsta-
cles, Avnaim, Boissonnat, and Faverjon [1] presents an exact
algorithm to generate the corresponding C-space obstacles with
ruled surface patches on their boundaries. To generate gross
motion paths, they represent the collisior-free space as a collec-
tion of triangular prism cells. These prism cells are constructed
using a space-sweep method which sweeps a plane along the §-
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axis while maintaining the triangulation of polygonal free-space.
The space sweep updates the triangulation whenever a triangle
degenerates into a line segment or any two polygonal regions
merge into a new polygonal region. Since this algorithm uses
various features of polygons, it is not easy to extend this re-
sult to the curved case. The simple structure of hv-cells would
make this generalization easier than using triangular prisms. De-
generacy detection for hv-cells would be easier than triangles
since the degeneracy for hv-cell occurs when two horizontal lines
come to overlap whereas the triangular degeneracy occurs when
any two of the three edges overlap. The high time complexity
O(m®nfa(mn)) of Avnaim, Boissonnat, and Faverjon [1] seems
due to the difficulties in detecting the degeneracies of the trian-
gles maintained in the space-sweep. One possible way to reduce
this complexity would be to simplify the degeneracy detections
by using simpler cells like hv-cells rather than the triangular
cells for free-space decompositions.

The rest of the paper is as follows. In §2 we review the
previous computational geometry algorithms for planar geomet-
ric models useful in designing efficient motion planning algo-
rithms in this paper. These include the algorithms to compute
the convex hulls and various decompositions of planar geomet-
ric models. In §3 we present various collision-avoidance motion
planning algorithms for planar geometric models. Finally, in §4
we conclude this paper. We implemented these motion planning
algorithms on Symbolics 3650 Lisp Machine and SUN4/330GX
Sparc Station using Common Lisp for the simple planar geomet-
ric models bounded by circular arcs and line segments. Further
implementations are currently going on using Gaussian Approx-
imations [13] to deal with planar geometric models bounded by
general planar algebraic curve segments.

2 Algorithms for Planar Geometric Mod-
els

We review some of the previous algorithms designed for planar
geometric models. These algorithms are useful in designing ef-
ficient algorithms in later sections. In §2.1-2.2 we review the
algorithms to compute the convex hulls and various decompo-
sitions of planar geometric models. For gross motion planning,
one may compute the C-Space obstacles for the convex hulls of
the moving objects and the obstacles. Alternatively, one may
first decompose the given models into certain primitive pieces
and then apply the C-space obstacle generations on the decom-
posed pieces of object and obstacle pairs. In §2.3 we also con-
sider the Voronoi Diagrams of planar geometric models and de-
rive systems of polynomial equations defining the Voronoi edges.
Under the Euclidean distance function the degrees of Voronoi
edges are extremely high. Thus, it is not plausible to apply the
retraction method of [18] directly to the C-space obstacles. In-
stead, in §3.1 we present how to use the Voronoi Diagrams of
the outer and simple carrier polygons of C-space obstacles to
compute collision-avoidance paths.

2.1 Convex Hulls

The convex hull computation is a fundamental one in compu-
tational geometry. There are numerous applications in which
the convex hulls of complex objects can be used effectively to
make certain geometric decisions easier. For example, a null
intersection between the convex hulls of two objects implies a
null intersection between the original objects. Since intersection
testing for convex objects is easier than for general ob jects, con-
vex hulls intersection is often used as an efficient first test in an
intersection detection algorithm for non-convex objects. Addi-



tional motivation arises from the use of convex hulls for heuristic
collision-free motion planning of general objects among obsta-
cles. Motion planning is easier for convex objects and obstacles,
{3).

Several linear-time algorithms for computing the convex hulls
of simple planar polygons are known, {11,14]. These algorithms
achieve the more efficient O(n) bound whereas the Q(nlogn)
lower bound applies to the general problem of computing the
convex hull of n points in the plane, [19]. By generalizing [11] to
an edge-based algorithm Schiffer and Van Wyk [20] extend the
planar polygon results to a linear-time algorithm for curved ob-
jects bounded by piecewise-smooth Jordan curves. Dobkin and
Souvaine [10} suggests a linear—time convex hull algorithm for
a class of planar curved objects. Bajaj and Kim [5,6] also pro-
posed a simple linear time algorithm for computing the convex
hulls of objects bounded by algebraic curves.

2.2 Decompositions

Most algorithms in computational geometry have been designed
for discrete objects like points, lines, polygons, and polyhedra,
see [15,19]. Using the splinegon as a generalization of the poly-
gon, Dobkin and Souvaine [10] presents methods for extending
polygonal algorithms to algorithms for splinegons. A splinegonis
a polygon whose edges have been replaced by convex, concave or
linear curve segments, and the carrier polygon of a splinegon is
the polygon connecting adjacent vertices of a splinegon. Dobkin,
Souvaine, and Van Wyk {9] show that the O(nloglogn) time al-
gorithm for the horizontal-vertex-visibility partition of a simple
polygon {22] can easily be generalized to a simple splinegon, and
using this partition they present an algorithm to decompose a
simple splinegon into a union of monotone pieces and further into
a union of differences of unions of possibly overlapping convex
pieces. They also show that simplifying the carrier polygon can
be quite expensive by constructing an n-sided splinegon whose
smallest simple carrier polygon has 2(n?) edges.

Bajaj and Kim [5,6] presented an O(nloglogn + k - d°))
algorithm to compute a simple carrier polygon of planar geo-
metric models, where n is the number of monotone boundary
curve segments and k is the number of edges in the resulting
simple carrier polygon. Further, the worst case upper bound
of k is shown to be the optimal ©(n?). Bajaj and Kim [5,6)
also presented an O(nloglogn + K - d°)) algorithm to con-
struct a simple characteristic carrier polygon of planar curved
object, where K is the minimum number of edges for (possi-
bly non-simple) characteristic carrier polygons of the object, see
Figure 2(a). A carrier polygon is characteristic if it differs from
the original object by convex regions each of which is totally
contained in the interior of the object or in its exterior.

We can also construct within the same time bound O(n log log
A -dPW) an inner polygon (resp. an outer polygon) which is
a simple polygon totally contained in (resp. totally containing)
the object, see Figure 2(b)-2(c). In contrast to the simple carrier
polygon construction, the worst-case upper bound for K can be
arbitrarily large as the inner angle between two adjacent edges
approaches to 0 or 27, however, it is small in practice. K (hence-
forth called the characteristic number) in some sense represents
the shape degeneracy of the object. In the construction of the
characteristic, inner and outer polygons, we assume the object
has no vertex with its inner angle being 0 or 2. Using these
polygons, we can compute (1) a convex decomposition of the
object as a difference of unions of disjoint convex objects, and
(2) a decomposition of the object as 2 union of disjoint certain
primitive objects.
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Figure 2: (a) Simple Characteristic Polygon. (b) Inner Polygon.
(c) Outer Polygon.

2.3 Voronoi Diagrams of Algebraic Curves

Yap [24] gives an efficient O(n logn) algorithm to construct the
Voronoi Diagram for a set of points, line segments, and circular
arcs in the plane. The Voronoi edges consist of conic curves in
this case. However, in the Voronoi Diagrams for general alge-
braic curve segments, we may have Voronoi edges of very high
degree algebraic curve segments. In the following, we derive
the algebraic equations of the bisectors for (1) a single algebraic
curve f = 0, and (2) two different irreducible algebraic curves
f = 0and g = 0. By Bezout theorem [23], we can show the
degrees of these bisectors can be as high as O(d*) when f = 0
and g = 0 are of degree d. Since the C-space obstacle boundary
curves can have degree O(d®) for moving objects and obstacles
bounded by degree d algebraic curves, we may have O(d?) de-
gree curve segments on the corresponding Voronoi Diagrams of
the C-space obstacles. This degree complexity justifies our alter-
native approximation-based approaches to be discussed in §3.1
using the inner and outer polygons of the C-space obstacles.



2.3.1 Bisector of an Algebraic Curve

Let €' be an algebraic curve defined by an implicit equation
J = 0, then the bisector of C is the set of points which are
equidistant from two different points on C. Suppose p is equidis-
tant from py and py on C, je., d(p,p1) = d(p,p2) = r for some
r > 0, then the circle of radius r with center at p is tangent to
C' at py and p;. Further, p is a singular point of the constant
radius offset curve of C with respect to a radius r. The algebraic
equation F(z,y,7) = 0 for this offset curve can be derived from
[3]. Since p is a singular point of this curve, p = (z,y) satisfies
F = t; = F, = 0. By eliminating the variable r from any two
of these three equations, we can derive three algebraic equations
So(FFy), Se(F, Fy), Sy (F5, Fy), where S, is the Sylvester resul-
tant eliminating the variable r. The bisector curve of C satisfies
these three S, equations simultaneously and thus the common
factor of the three S,’s. Since F* has algebraic degree O(d?) and
5,'s have degree O(d*), the bisector of C' may have degree O(d*?)
in the worst case, [23].

2.3.2 Bisector of Two Algebraic Curves

Let ¢ and ) be two different algebraic curve segments defined
by implicit equations f = 0 and g = 0 respectively, then the
bisector of ' and D is the set of points which are equidistant
from two different points p; and p; on C and D respectively.
The bisector equation is given by the following equation. Thus,
the bisector can have degree O(d?) in the worst case, [23].

flzi,y1) =0and py = (z1,31) € C (1)
g(za,y2) = 0 and py = (22,42) € D (2)

fl«-ﬂ]~fy~(11:0 (3)
9z P2~ gy -2 =0 (4)
af + 8} = of + 82 (5)

3 Motion Planning with Planar Geomet-
ric Models

In this section, we consider various applications of the computa-
tional geometry algorithms presented in §2 to the collision-free
robot motion planning problems for planar geometric models.
We assume the C-space obstacles (3] are computed for the robots
moving with fixed orientations and only consider point motions
among the C-space obstacles.

3.1 Voronoi Diagrams for Outer and Simple Car-
rier Polygons

As discussed in §2.2, we can construct disjoint outer polygons
of multiple disjoint planar C-space obstacles within O(nlogn +
R - d9)) time, where K is the characteristic number of the C-
space obstacles. The collision-free space of these outer polygons
is continuously deformable to the free space of original obstacles.
Since each outer polygonal edge and its corresponding obstacle
boundary edge are horizontally visible from each other, a point
p which is inside an outer polygon, but not in any obstacle, can
move along a horizontal line segment into an outer polygonal
edge without colliding with any obstacle. Thus, we may assume
the start point ps and the goal point pg are in the free space of
outer polygons. Now, we can use the method of [18] using the
Voronoi diagram of outer polygons to construct a collision-free
path v from ps to pg. Since the outer polygons of obstacles have
total O(A') number of edges, this method is attractive when X
is almost linear or reasonably small.
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Figure 3: (a) Moving p Along D. (b) Moving p Along Colliding
Convex Edge.

We can construct disjoint simple carrier polygons of disjoint
obstacles within O(nlogn + k - d®(V)) time, where k is the to-
tal number of edges in the carrier polygons, which is at most
O(n?). We first consider how to move a point p which is inside a
carrier polygon, but not in any obstacle, without colliding with
obstacles. Let H be the horizontal visibility cell containing the
point p and in the exterior of obstacles. Assume C and D are
the right and left sides of H. Since p is inside a carrier polygon,
either C or D is concave. We may assume C is concave and p
is contained in the convex region $(C). We move p until it hits
a carrier polygonal edge or the left side D. If it hits D first,
then we can move p along D until it hits a carrier polygonal
edge, see Figure 3(a). Thus, we may assume the start point ps
and the goal point pg are in the free space of the carrier poly-
gons. Then a Voronoi diagram of these disjoint simple carrier
polygons and a path avoiding collisions with these carrier poly-
gons can be constructed within O(klogk) time, [18]. Though
this path may intersect with some obstacles, this collision could
occur only with convex edges of the obstacle, see Figure 3(b).



Since we assume each convex edge is monotone, it is obvious in
which direction we have to move along the colliding convex edge.
Further the construction of a simple carrier polygon is more ef-
ficient than the construction of an outer polygon in the worst
case. As long as the robots are allowed to move with contacts
with the obstacles, this method would be more efficient than the
above method using disjoint outer polygons especially when the
characteristic number X is large.

3.2 Horizontal Vertex Visibility Cells Graph

Using the horizontal vertex visibility partition of the outside of
obstacles we can decompose the free space into O(n) simple cells.
Then we can represent the connectivity of these cells in terms
ol a graph and check the connectivity of this graph between the
two cells containing the starting point ps and the goal point pg
by doing a search on this connectivity graph, see Figure 4. There
is a collision-free path between the starting and goal points if
and only if there is a connected path between the starting and
goal cells in this graph.

The hv-cells in Figure 4 have various configurations depend-
ing on the y-extreme vertices encountered in the construction.
Assuniing that there are no y-extreme vertices with the same
y-coordinates, the hv-cells can have at most four adjacent hv-
cells, at most two from the above and at most two from the
below. Two adjacent hv-cells share a common horizontal edge
which is one of the boundary edges of the hv-cells. When the
path passes through an hv-cell, this path is entering this hv-cell
through one of the horizontal edges and is exiting the hv-cell
through the other horizontal edge. A connected path of hv-cells
on the hv-cells-graph decides these entering and exiting edges on
each hv-cell on the path. Depending on the local configurations
of inter-connected adjacent hv-cells and the various heuristic
strategies for path construction, we determine the entering and
exiting points on the corresponding entering and exiting edges.
The path construction is essentially reduced to constructing for
cach hv-cell a path segment connecting the entering and exiting
points totally within the hv-cell. By adding intermediate pass
points and the corresponding horizontal edges in the hv-cells we
may assume the y-coordinate changes monotonically along the
path segment within an hv-cell. We interpolate the horizontal
ratios of the entering and exiting points on the corresponding
edges. In Figure 5, aq and 3y (with e+ az =1 and f1+6; = 1)
are the entering and exiting horizontal ratios respectively. We
may parameterize the constructed path segment so that the in-
termediate y-coordinates change linearly from the entering to
the exiting y-coordinates. The corresponding intermediate hori-
zontal ratio may be a linear interpolation v1(t) = ay-(1—1t)+5;-¢
which is parameterized by ¢, 0 < ¢ < 1. Thus, at an intermediate
y-level y(t), the corresponding horizontal line is intersected with
the left and right walls of the hv-cell, and with the corresponding
left and right intersection points pi{t) = (zi(t), y(t)) and p.(t) =
(z-(t),y(t)) we generate the path point p(t) = (z(t),y(t)) at
time t, where z(t) = (1 — 71 () - z1(t) + 11 (t) - z-(t).

3.3 Motions with Translations and Rotations

We consider the gross motion planning of the robots moving
with both translational and rotational degrees of freedom while
avoiding collisions with obstacles in a plane. For the polygo-
nal case, Avnaim, Boissonnat, and Faverjon [1] recently pre-
sented algorithms to generate the C-space obstacles for poly-
gons moving with translations and rotations amidst polygonal
obstacles. They construct the boundaries of three dimensional

C-space obstacles in O(m3n®log(mn)) time and the connectiv-
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ity graph of volumetric prism cell decomposition of collision-free
space in O(m®nSa(mn)log(mn)) time, where m and 7 are the
numbers of edges in the moving polygon and the obstacle poly-
gons respectively and a(mn) is the Ackermann’s Inverse func-
tion which is an almost linear function of mn. However, it is
not easy to extend this algorithm to the curved case, since the
construction heavily depends on the discrete properties of line
segments. It is still an important open problem to generate
the exact C-space obstacle boundaries for planar curved mov-
ing objects and obstacles with both translational and rotational
degrees of freedom. Further, the time complexity of this al-
gorithm O(mS®n8a(mn)log(mn)) for volumetric representation
with prism cell decomposition of collision-free space is also quite
pessimistic. Because of these difficulties, in the meantime we
decided to use the conventional slicing method [16,17).

We divide the overall orientations into a certain finite numer
of slices [61,62],(62,83),...,[0,_1,6,], where #; = 0 and 9, = 2r.
At each orientation 8; (i = 1,... ,m), we construct the C-space
obstacle C'Og; for the object moving with a fixed orientation
at angle #;. We then compute the purely rotational sweep vol-
ume Apg, 6,1 of the moving object over the orientation range
(0,80 G=1,...,n~ 1). The C-space obstacle COp | for

i1



Atg, 6,,,] as @ moving object is the sct of all the positions where
the original moving object can rotate without collisions with ob-
stacles from orientation 6; to @41 or from 6;4q to 6;. Let F§
denote the free space which is the complement of C-space ob-
stacle C'O. Figure 6(a) (resp. 6(h) and 6(c)) shows the hv-cells
decomposition of 'Sy (resp. FS, /s and FS|g 17g). Each con-
nected component Sig ;.1 of F'S(g, g,,,1 is totally contained in
a connected component Sy, (resp. Sy,,,) of the free space FSy,
{res. FSy,,,). For each 516, 8,,,) and the corresponding Sy, and
So,41> we have Sp, g...1 € S5, N Sg,,, and Sy, and Y4, are con-
nected through any point of Sp, 4,,,)- The object can move with
translations and rotations as follows. The moving object with
its refercnce point in S, (resp. Se,,,) first translates into a po-
sition in S5, g,,,], Totates by an angle 811 ~ 8; (vesp. 8 — 8i41)
without collisions with obstacles, and then translates to a posi-
tion in Sy, ,, (resp. Sp,). Any point in the connected component
S1,,6:4,) Would be sufficient to connect the connected compo-
nents Sg, and Sp,,, in different orientation layers. Though se-
lecting one point from each connected component Sy, 4,1 would
be sufficient for the completeness of motion planning with slicing
method, for a better performance we select one point pg, g,,,]
from cach hv-cell of FSp 5., and connect the corresponding
hv-cells Mg, and Hy,,, containing pp,g,,,) in the connectivity
graph of the layered hv-cells-graphs. The motion of object from
Hg, to Hy,,, and vice versa can be done in a similar way as
with Sp, and Sp,,,. Figure 6(d)-(e) show robot motions with
translations and rotations.

i1

4 Conclusion

We presented various algorithms for collision-avoidance robot
motion planning with planar geometric models. Previous com-
putational geometry algorithms for planar geometric models are
assumed in this paper. These include the algorithms to compute
1. the C-space obstacle boundarics,
2. the rotational sweep volumes,

3. the convex hulls, and

1. various decompositions of planar geometric models.
We suggested motion planning algorithms using

1. the simple characteristic polygons,

2. the outer simple polygons,

3. the Lorizontal vertex visibility cells decompositions, and

4. the connectivity graph of inter-connected layered hv-cells-

graph slices.

Some of these motion planning algorithms are implemented on
SUN4/330GX Sparc Station using Common Lisp for the sim-
ple planar geometric models bounded by circular arcs and line
segments. Further implementations are currently going on to
deal with planar geometric models bounded by general planar
algebraic curve segments.
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Figure 6: (a) FSo. (b) FS.s5. (¢) FSjprse. (d)-(e) Motions
with Translations and Rotations.

1003



