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THE LINEAR 2-ARBORICITY OF PLANAR GRAPHS

WITHOUT ADJACENT SHORT CYCLES

Hong-Yu Chen, Xiang Tan, and Jian-Liang Wu

Abstract. Let G be a planar graph with maximum degree ∆. The
linear 2-arboricity la2(G) of G is the least integer k such that G can be
partitioned into k edge-disjoint forests, whose component trees are paths

of length at most 2. In this paper, we prove that (1) la2(G) ≤ ⌈∆
2
⌉+8 if

G has no adjacent 3-cycles; (2) la2(G) ≤ ⌈∆
2
⌉ + 10 if G has no adjacent

4-cycles; (3) la2(G) ≤ ⌈∆
2
⌉+ 6 if any 3-cycle is not adjacent to a 4-cycle

of G.

1. Introduction

In this paper, all graphs are finite, simple and undirected. For a real number
x, ⌈x⌉ is the least integer not less than x and ⌊x⌋ is the largest integer not larger
than x. Let G be a graph. We use V (G) and E(G) to denote the vertex set and
the edge set, respectively. If uv ∈ E(G), then u is said to be the neighbor of v,
and N(v) is the set of neighbors of v. The degree of a vertex v d(v) = |N(v)|,
δ(G) is the minimum degree and ∆(G) is the maximum degree of G. A k-, k+-
or k−- vertex is a vertex of degree k, at least k, or at most k, respectively. A
k- cycle is a cycle of length k. Two cycles are said to be adjacent if they are
incident with a common edge. For s ≥ 2, an even cycle C = v1v2 · · · v2sv1 is
called a 2-alternating cycle if d(v1) = d(v3) = · · · = d(v2s−1) = 2.

An edge-partition of a graph G is a decomposition of G into subgraphs
G1, G2, . . . , Gm such that E(G) = E(G1) ∪E(G2) ∪ · · · ∪E(Gm) and E(Gi) ∩
E(Gj) = ∅ for i ̸= j. A linear k-forest is a graph in which each component
is a path of length at most k. The linear k-arboricity lak(G) of a graph G is
the least integer m such that G can be edge-partitioned into m linear k-forests.
Clearly, lak(G) ≥ lak+1(G) for any k ≥ 1. For extremities, la1(G) is the edge

chromatic number χ
′
(G) of G; la∞(G) representing the case when component

paths have unlimited lengths is the ordinary linear arboricity la(G) of G.
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The linear k-arboricity of a graph was first introduced by Habib and Péroche
[7]. They posed the following conjecture.

Conjecture A. For a graph G of order n and a positive integer i,

lai(G) ≤
{

⌈(∆n+ 1)/2⌊ in
i+1⌋⌉ if ∆ ̸= n− 1,

⌈(∆n)/2⌊ in
i+1⌋⌉ if ∆ = n− 1.

The linear k-arboricity of cycles, trees, complete graphs and complete bipar-
tite graphs has been determined in [5], [6]. Thomassen [12] proved that lak ≤ 2
for a cubic graph G, where k ≥ 5, and this result is best possible. Chang [3] and
Chang et al. [4] investigated the algorithmic aspects of the linear k-arboricity.
It was further studied by Bermond et al. [2], Jackson and Wormald [8], and
Aldred and Wormald [1]. Lih, Tong and Wang [9] proved that for a planar
graph G, la2(G) ≤ ⌈∆+1

2 ⌉ + 12; Moreover, la2(G) ≤ ⌈∆+1
2 ⌉ + 6 if G does not

contain 3-cycles. Qian and Wang [11] proved that for a planar graph G without
4-cycles, la2(G) ≤ ⌈∆+1

2 ⌉ + 3. Ma, Wu and Yu [10] proved that for a planar

graph G without 5- or 6-cycles, la2(G) ≤ ⌈∆+1
2 ⌉ + 6. For a planar graph G,

we will prove that (1) la2(G) ≤ ⌈∆
2 ⌉ + 8 if G has no adjacent 3-cycles; (2)

la2(G) ≤ ⌈∆
2 ⌉+ 10 if G has no adjacent 4-cycles; (3) la2(G) ≤ ⌈∆

2 ⌉+ 6 if any
3-cycle is not adjacent to a 4-cycle of G.

2. Main results and their proofs

In the section, we always assume that a planar graph G has always been
embedded in the plane. Let G be a planar graph and F (G) be the face set of
G. For f ∈ F (G), the degree of f , denoted by d(f), is the number of edges
incident with it, where each cut-edge is counted twice. A k-, k+- or k−- face is
a face of degree k, at least k, or at most k, respectively. Let ni(v) denote the
number of i-vertices of G adjacent to the vertex v, qi(v) the number of i-faces
of G incident with v. A k-face with consecutive vertices v1, v2, . . . , vk along its
boundary in some direction is often said to be (d(v1), d(v2), . . . , d(vk))-face.

Lemma 1. Let G be a connected planar graph with δ(G) ≥ 2. If G has no
adjacent 3-cycles, then G contains an edge xy such that d(x) + d(y) ≤ 11, or
G contains a 2-alternating cycle.

Proof. Suppose, to the contrary, that G is such a connected planar graph not
satisfying the lemma. Then we have

(a) For any vertex v, q3(v) ≤ ⌊d(v)
2 ⌋;

(b) For any vertex v, n2(v) + n3(v) + q3(v) ≤ d(v);
(c) Let G2 be the subgraph induced by the edges incident with the 2-vertices

of G, then G2 is a forest and there exists a matching M such that all 2-vertices
in G2 are saturated.

(a) is obvious. For (b), suppose f is a 3-face incident with v. Since d(x) +
d(y) ≥ 12 for any edge xy ∈ E(G), f is incident with at most one 5−-vertex.
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So v is adjacent to at least q3(v) 6+-vertices. Hence, d(v) − n2(v) − n3(v) ≥
d(v)−

∑5
i=2 ni(v) ≥ q3(v).

For (c), since d(x) + d(y) ≥ 12 for every edge xy ∈ E(G), every pair of
2-vertices is nonadjacent. Hence, G2 does not contain any odd cycle. Since G
does not contain any 2-alternating cycle, G2 does not contain any even cycle.
So every component of G2 is a tree and there exists a matching M such that
all 2-vertices in G2 are saturated.

If uv ∈ M and d(u) = 2, we call v the 2-master of u.

By Euler’s formula |V | − |E|+ |F | = 2, we have

(1)
∑
v∈V

(d(v)− 4) +
∑
f∈F

(d(f)− 4) = −4(|V | − |E|+ |F |) = −8 < 0.

We define ch to be the initial charge. Let ch(x) = d(x) − 4 for each x ∈
V (G)∪F (G). In the following, we will reassign a new charge denoted by ch

′
(x)

to each x ∈ V (G) ∪ F (G) according to the discharging rules. Since our rules
only move charges around, and do not affect the sum, we have

(2)
∑

x∈V (G)∪F (G)

ch
′
(x) =

∑
x∈V (G)∪F (G)

ch(x) = −8.

In the following, we will show that ch
′
(x) ≥ 0 for each x ∈ V (G) ∪ F (G), a

contradiction to (2), completing the proof.

The discharging rules are defined as follows.

R1-1. Each 2-vertex receives 2 from its 2-master.
R1-2. Each 3-vertex receives 1

3 from each of its neighbors.

R1-3. If a 3-face f is incident with a 4−-vertex, then f receives 1
2 from

each of another two incident vertices; Otherwise, f receives 1
3 from each of its

incident vertices.

Let f be a face of G. If d(f) ≥ 4, then ch
′
(f) = ch(f) ≥ 0. If d(f) = 3,

then it is incident with at most one 4−-vertex. It follows that ch
′
(f) ≥ ch(f)+

min{2× 1
2 , 3×

1
3} = 0 by R1-3.

Let v be a vertex of G. If d(v) = 2, then ch
′
(v) = ch(v) + 2 = 0 by R1-1.

If d(v) = 3, then ch
′
(v) = ch(v) + 3 × 1

3 = 0 by R1-2. If d(v) = 4, then

ch
′
(v) = ch(v) = d(v) − 4 = 0. If 5 ≤ d(v) ≤ 8, then q3(v) ≤ ⌊d(v)

2 ⌋ by

(a), it follows that ch
′
(v) ≥ ch(v) − 1

2q3(v) ≥ 0 by R1-3. If d(v) = 9, then

q3(v) ≤ 4 by (a), and n3(v) ≤ d(v) − q3(v) by (b). It follows that ch
′
(v) ≥

ch(v)− 1
2q3(v)−

1
3n3(v) ≥ 0 by R1-2 and R1-3. If d(v) ≥ 10, then q3(v) ≤ ⌊d(v)

2 ⌋
by (a), and n3(v) ≤ d(v) − q3(v) − n2(v) by (b). It follows that ch

′
(v) ≥

ch(v)−max{2+ 1
2q3(v)+

1
3 (d(v)− q3(v)−n2(v)),

1
2q3(v)+

1
3 (d(v)− q3(v))} ≥
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max{2 + 1
2q3(v) +

1
3 (d(v)− q3(v)− 1), 1

2q3(v) +
1
3 (d(v)− q3(v))} ≥ 0 by R1-1,

R1-2 and R1-3.
Hence we complete the proof of the lemma. □

Lemma 2. Every planar graph G without adjacent 3-cycles has an edge-parti-
tion into two forests T1, T2 and a subgraph H such that for every v ∈ V (G),

dT1(v) ≤ ⌈dG(v)
2 ⌉, dT2(v) ≤ ⌈dG(v)

2 ⌉ and dH(v) ≤ 6.

Proof. The proof of the lemma is by induction on the number |V (G)|+ |E(G)|.
For a planar graph G with |V (G)| + |E(G)| ≤ 5, the lemma holds obviously.
For a planar graph G with |V (G)|+ |E(G)| ≥ 6, if ∆(G) ≤ 6, then let H = G
and T1 = T2 = ∅, the result holds.

Suppose that ∆(G) ≥ 7. We may assume that G is a connected planar

graph. By the induction, if G
′
is a proper subgraph of G, the lemma is true for

the graph G
′
, that is, G

′
has an edge-partition into two forests T

′

1, T
′

2 and a

subgraph H
′
such that for every v ∈ V (G

′
), dH′ (v) ≤ 6 and dT ′

i
(v) ≤ ⌈d

G
′ (v)

2 ⌉
for i = 1, 2. We will choose an appropriate subgraph G

′
to extend T

′

1 ∪T
′

2 ∪H
′

to an edge-partition T1 ∪ T2 ∪H of G satisfying the lemma.
We now consider two cases according to the minimum degree of G.
Case 1. δ(G) = 1. Let uv ∈ E(G) and dG(u) = 1. Define the graph

G
′
= G− uv.
If dH′ (v) ≤ 5, then let H = H

′
+ uv and Ti = T

′

i for i = 1, 2. It is easy to
see that the result holds.

If dH′ (v) = 6, suppose that dT ′
1
(v) ≤ dT ′

2
(v). Since dG′ (v) = dT ′

1
(v) +

dT ′
2
(v) + dH′ (v) = dT ′

1
(v) + dT ′

2
(v) + 6 and dG′ (v) = dG(v) − 1, we have

dT ′
1
(v) ≤ dG(v)−7

2 . Let T1 = T
′

1 + uv, T2 = T
′

2 and H = H
′
. Thus dT2(x) =

dT ′
2
(x) and dH(x) = dH′ (x) for all x ∈ V (G

′
). Moreover, dT1(u) = 1 =

⌈dG(u)
2 ⌉, dT1(v) = 1+ dT ′

1
(v) ≤ 1+ dG(v)−7

2 < ⌈dG(v)
2 ⌉, and dT1(x) = dT ′

1
(x) for

all x ∈ V (G)\{u, v}.
Case 2. δ(G) ≥ 2. By Lemma 1, we only need to consider two subcases.
Subcase 1. G contains an edge xy ∈ E(G) such that dG(x) + dG(y) ≤ 11.

Define the graph G
′
= G−xy and assume that dH′ (x) ≤ dH′ (y). If dH′ (y) ≤

5, let H = H
′
+ xy, T1 = T

′

1 and T2 = T
′

2, then the lemma holds obviously.
Suppose that dH′ (y) = 6. Then 1 ≤ dG′ (x) ≤ 3 and dT ′

1
(y) + dT ′

2
(y) +

dG′ (x) ≤ 3. We may assume dT ′
1
(x) ≤ dT ′

2
(x).

If dG′ (x) = 3, then y ̸∈ V (T
′

1) and y ̸∈ V (T
′

2). Let T1 = T
′

1 + xy, T2 = T
′

2

and H = H
′
. If dG′ (x) = 2, then x ∈ V (T

′

1) and x ∈ V (T
′

2) since dT ′
i
(x) ≤

⌈d
G

′ (x)

2 ⌉ for i = 1, 2. Also note that y ̸∈ V (T
′

1) or y ̸∈ V (T
′

2), Assume that

y ̸∈ V (T
′

1). Again let T1 = T
′

1 + xy, T2 = T
′

2 and H = H
′
. We see that T1

is a forest and dT1(x) = 2 = ⌈ 3
2⌉ = ⌈dG(x)

2 ⌉. If dG′ (x) = 1, then x ̸∈ V (T
′

1).

Let T1 = T
′

1 + xy, T2 = T
′

2 and H = H
′
. We see that T1 is a forest and
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dT1(x) = 1 = ⌈dG(x)
2 ⌉. Furthermore, dT1(y) = dT ′

1
(y) + 1 ≤ 3 < ⌈dG(y)

2 ⌉, the
result holds.

Subcase 2. G contains a 2-alternating cycle C = v1v2 · · · v2sv1, s ≥ 2, such
that dG(v1) = dG(v3) = · · · = dG(v2s−1) = 2.

Define the graph G
′
= G− E(C). Let T1 = T

′

1 + {v1v2, v3v4, . . . , v2s−1v2s},
T2 = T

′

2 + {v2v3, v4v5, . . . , v2sv1} and H = H
′
. Note that both T1 and T2

are forests. Since dG(x) = dG′ (x) + 2 for vertices x of the cycle C, we see

that dT1(vj) = dT2(vj) = 1 =
dG(vj)

2 for j = 1, 3, . . . , 2s − 1, and dTi(vj) =

dT ′
i
(vj) + 1 ≤ ⌈d

G
′ (vj)

2 ⌉ + 1 = ⌈dG(vj)
2 ⌉ for i = 1, 2 and j = 2, 4, . . . , 2s, the

lemma holds. □

The following is a direct consequence of Lemma 2.

Corollary 3. Every planar graph G without adjacent 3-cycles can be edge-

partitioned into two forests T1, T2 and a subgraph H such that ∆(T1) ≤ ⌈∆(G)
2 ⌉,

∆(T2) ≤ ⌈∆(G)
2 ⌉ and ∆(H) ≤ 6.

Lemma 4. If a graph G can be edge-partitioned into m subgraphs G1, G2, . . .,
Gm, then la2(G) ≤

∑m
i=1 la2(Gi).

The above lemma is obvious since we just need to use disjoint color sets on
the Gi’s.

Lemma 5 ([5]). For a forest T , we have la2(T ) ≤ ⌈∆(T )+1
2 ⌉.

Lemma 6 ([2]). For a graph G, we have la2(G) ≤ ∆(G).

Now we are ready to prove our first main result.

Theorem 7. If G is a planar graph without adjacent 3-cycles, then la2(G) ≤
⌈∆(G)

2 ⌉+ 8.

Proof. By Corollary 3, G has an edge-partition into two forests T1, T2 and

a subgraph H such that ∆(T1) ≤ ⌈∆(G)
2 ⌉, ∆(T2) ≤ ⌈∆(G)

2 ⌉ and ∆(H) ≤ 6.
Combining Lemmas 4, 5, 6, we obtain the following sequence of inequalities.

la2(G) ≤ la2(T1) + la2(T2) + la2(H)

≤ ⌈∆(T1) + 1

2
⌉+ ⌈∆(T2) + 1

2
⌉+∆(H)

≤ 2⌈
⌈∆(G)

2 ⌉+ 1

2
⌉+ 6

≤ (⌈∆(G)

2
⌉+ 2) + 6

= ⌈∆(G)

2
⌉+ 8. □
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Lemma 8. Let G be a connected planar graph with δ(G) ≥ 2. If G has no
adjacent 4-cycles, then G contains an edge xy such that d(x) + d(y) ≤ 13, or
G contains a 2-alternating cycle.

Proof. Suppose, to the contrary, that G is such a connected planar graph not
satisfying the lemma. Then we have

(a) For any vertex v, q3(v) ≤ ⌊ 2d(v)
3 ⌋;

(b) For any vertex v, n2(v) + n3(v) + ⌈ q3(v)
2 ⌉ ≤ d(v);

(c) Let G2 be the subgraph induced by the edges incident with the 2-vertices
of G, then G2 is a forest and there exists a matching M such that all 2-vertices
in G2 are saturated.

(a) is obvious. For (b), suppose f is a 3-face incident with v. Since d(x) +
d(y) ≥ 14 for any edge xy ∈ E(G), f is incident with at most one 6−-vertex.

So v is adjacent to at least ⌈ q3(v)
2 ⌉ 7+-vertices. Hence, d(v)− n2(v)− n3(v) ≥

d(v)−
∑6

i=2 ni(v) ≥ ⌈ q3(v)
2 ⌉.

For (c), it is similar to that of Lemma 1(c).
If uv ∈ M and d(u) = 2, we call v the 2-master of u.

By Euler’s formula |V | − |E|+ |F | = 2, we have

(3)
∑
v∈V

(d(v)− 4) +
∑
f∈F

(d(f)− 4) = −4(|V | − |E|+ |F |) = −8 < 0.

We define ch to be the initial charge. Let ch(v) = d(v)−4 for each v ∈ V (G)
and ch(f) = d(f) − 4 for each f ∈ F (G). In the following, we will reassign

a new charge denoted by ch
′
(x) to each x ∈ V (G) ∪ F (G) according to the

discharging rules. Since our rules only move charges around, and do not affect
the sum, we have

(4)
∑

x∈V (G)∪F (G)

ch
′
(x) =

∑
x∈V (G)∪F (G)

ch(x) = −8.

In the following, we will show that ch
′
(x) ≥ 0 for each x ∈ V (G) ∪ F (G), a

contradiction to (4), completing the proof.

Now, let us introduce the needed discharging rules as follows:

R2-1. Each 2-vertex receives 2 from its 2-master.
R2-2. Each 3-vertex receives 4

15 from each of its neighbors.

R2-3. If a vertex v is incident with a 5+-face f , then v receives 1
5 from f .

R2-4. Each 3-face receives 1
2 from each of its incident 7+-vertices.

Let f be a face of G. If d(f) ≥ 5, then ch
′
(f) ≥ ch(f) − d(f) × 1

5 ≥ 0 by

R2-3. If d(f) = 4, then ch
′
(f) = ch(f) = d(f)− 4 = 0. If d(f) = 3, then it is

incident with at least two 7+-vertices. It follows that ch
′
(f) ≥ ch(f)+2× 1

2 = 0
by R2-4.
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Let v be a vertex of G. If d(v) = 2, then ch
′
(v) = ch(v) + 2 = 0 by

R2-1. If d(v) = 3, then v is incident with at least one 5+-face and ch
′
(v) ≥

ch(v)+ 1
5+3× 4

15 = 0 by R2-2 and R2-3. If 4 ≤ d(v) ≤ 6, then ch
′
(v) = ch(v) =

d(v)− 4 ≥ 0. If 7 ≤ d(v) ≤ 10, then v is incident with at most ⌊ 2d(v)
3 ⌋ 3-faces

by (a), it follows that ch
′
(v) ≥ ch(v) − 1

2⌊
2d(v)

3 ⌋ > 0 by R2-4. If d(v) = 11,

then q3(v) ≤ 7 by (a), and n3(v) ≤ d(v) − ⌈ q3(v)
2 ⌉ by (b). It follows that

ch
′
(v) ≥ ch(v) − 1

2q3(v) −
4
15n3(v) > 0 by R2-2 and R2-4. If d(v) ≥ 12, then

q3(v) ≤ ⌊ 2d(v)
3 ⌋ by (a), and n3(v) ≤ d(v) − n2(v) − ⌈ q3(v)

2 ⌉ by (b). It follows

that ch
′
(v) ≥ ch(v) −max{2 + 1

2q3(v) +
4
15 (d(v) − n2(v) − ⌈ q3(v)

2 ⌉), 1
2q3(v) +

4
15 (d(v)−⌈ q3(v)

2 ⌉) ≥ ch(v)−max{2+ 1
2q3(v)+

4
15 (d(v)− 1−⌈ q3(v)

2 ⌉), 1
2q3(v)+

4
15 (d(v)− ⌈ q3(v)

2 ⌉) ≥ 0 by R2-1, R2-2 and R2-4.
Hence, we complete the proof of the lemma. □

Using Lemma 8, the next result can be proved analogously to Lemma 2.

Lemma 9. Every planar graph G without adjacent 4-cycles can be edge-parti-

tioned into two forests T1, T2 and a subgraph H such that ∆(T1) ≤ ⌈∆(G)
2 ⌉,

∆(T2) ≤ ⌈∆(G)
2 ⌉ and ∆(H) ≤ 8.

Our second main result is the following theorem.

Theorem 10. If G is a planar graph without adjacent 4-cycles, then la2(G) ≤
⌈∆(G)

2 ⌉+ 10.

Proof. We can prove it using an argument similar to the proof of Theorem
7. □

Lemma 11. Let G be a connected planar graph with δ(G) ≥ 2. If any 3-
cycle is not adjacent to a 4-cycle of G, then G contains an edge xy such that
d(x) + d(y) ≤ 9, or G contains a 2-alternating cycle.

Proof. Suppose, to the contrary, that G is such a connected planar graph not
satisfying the lemma. Then we have

(a) Any 3-face is not adjacent to a 3-face;

(b) For any vertex v, q3(v) ≤ ⌊d(v)
2 ⌋;

(c) Let G2 be the subgraph induced by the edges incident with the 2-vertices
of G, then G2 is a forest and there exists a matching M such that all 2-vertices
in G2 are saturated.

By Euler’s formula |V | − |E|+ |F | = 2, we have

(5)
∑
v∈V

(2d(v)− 6) +
∑
f∈F

(d(f)− 6) = −6(|V | − |E|+ |F |) = −12 < 0.

We define ch to be the initial charge. Let ch(v) = 2d(v)−6 for each v ∈ V (G)
and ch(f) = d(f) − 6 for each f ∈ F (G). In the following, we will reassign
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a new charge denoted by ch
′
(x) to each x ∈ V (G) ∪ F (G) according to the

discharging rules. Since our rules only move charges around, and do not affect
the sum, we have

(6)
∑

x∈V (G)∪F (G)

ch
′
(x) =

∑
x∈V (G)∪F (G)

ch(x) = −12.

In the following, we will show that ch
′
(x) ≥ 0 for each x ∈ V (G) ∪ F (G), a

contradiction to (6), completing the proof.
The discharging rules are defined as follows.

R3-1. Each 2-vertex receives 2 from its 2-master.
R3-2. Each 5-vertex sends 1 to each of its incident 3-faces, 1

2 to each of its
incident other faces.

R3-3. Each 6+-vertex sends 3
2 to each of its incident 3-faces, 1 to each of

its incident 4-faces, 1
3 to each of its incident 5-faces.

In particular, we have

Remark 1. Let d(v) ≥ 6, f1, f2, . . . , fd be the faces incident with v in a clockwise
order. If d(fi) = 3, then d(fi+1) ≥ 5. v sends at most 3

2 + 1
3 = 11

6 to fi and
fi+1; If d(fi) = d(fi+1) = 4, then v sends 2 to fi and fi+1.

Let f be a face of G. If d(f) ≥ 6, then ch
′
(f) = ch(f) ≥ 0. If d(f) = 5,

then it is incident with at most two 4−-vertices. If f is incident with two
4−-vertices, then the other three vertices must be 6+-vertices. It follows that
ch

′
(f) ≥ ch(f) + 3 × 1

3 = 0 by R3-3. If f is incident with one 4−-vertices,

then ch
′
(f) ≥ ch(f) + 4 × 1

3 > 0 by R3-2 and R3-3. If f is not incident

with any 4−-vertices, then ch
′
(f) ≥ ch(f) + 5 × 1

3 > 0 by R3-2 and R3-3. If
d(f) = 4, then it is incident with at most two 4−-vertices. If f is incident with
at least one 4−-vertex, then f is incident with at least two 6+-vertices. Hence,
ch

′
(f) ≥ ch(f) + 2 × 1 = 0 by R3-3. If f is not incident with 4−-vertices,

then f receives at least 1
2 from each of its incident vertices by R3-2 and R3-3.

Hence, ch
′
(f) ≥ ch(f)+4× 1

2 = 0. If d(f) = 3, then it is incident with at most
one 4−-vertex. If f is incident with one 4−-vertex, then the other two vertices
must be 6+-vertices. Hence, ch

′
(f) ≥ ch(f) + 2 × 3

2 = 0 by R3-3. Otherwise,
f receives at least 1 from each of its incident vertices by R3-2 and R3-3. It
follows that ch

′
(f) ≥ ch(f) + 3× 1 = 0.

Let v be a vertex of G. If d(v) = 2, then ch
′
(v) = ch(v) + 2 = 0 by R3-1. If

3 ≤ d(v) ≤ 4, then ch
′
(v) = ch(v) ≥ 0. If d(v) = 5, then v is incident with at

most two 3-faces. It follows that ch
′
(v) ≥ ch(v)− 2× 1− 3× 1

2 > 0 by R3-2.
By Remark 1, for d(v) ≥ 6, we only need to consider the case that v is

incident with d(v) 4-faces.

If 6 ≤ d(v) ≤ 7, then ch
′
(v) ≥ ch(v) − d(v) × 1 ≥ 0 by R3-3. If d(v) ≥ 8,

then ch
′
(v) ≥ ch(v)− 2− d(v)× 1 ≥ 0 by R3-1 and R3-3.

Hence we complete the proof of the lemma. □
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Using Lemma 11, the next result can be proved analogously to Lemma 2.

Lemma 12. Let G be a planar graph. If any 3-cycle is not adjacent to a 4-
cycle, then G has an edge-partition into two forests T1, T2 and a subgraph H

such that ∆(T1) ≤ ⌈∆(G)
2 ⌉, ∆(T2) ≤ ⌈∆(G)

2 ⌉ and ∆(H) ≤ 4.

Our third main result is the following theorem.

Theorem 13. If G is a planar graph that any 3-cycle is not adjacent to a

4-cycle, then la2(G) ≤ ⌈∆(G)
2 ⌉+ 6.

The proof of Theorem 13 is similar to that of Theorem 7, we omit here.
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