TOTAL COLORINGS OF PLANAR GRAPHS WITH MAXIMUM DEGREE AT LEAST 7 AND WITHOUT ADJACENT 5-CYCLES

Xiang Tan

Abstract

A k-total-coloring of a graph G is a coloring of $V \cup E$ using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number $\chi^{\prime \prime}(G)$ of G is the smallest integer k such that G has a k-total-coloring. Let G be a planar graph with maximum degree Δ. In this paper, it's proved that if $\Delta \geq 7$ and G does not contain adjacent 5 -cycles, then the total chromatic number $\chi^{\prime \prime}(G)$ is $\Delta+1$.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. And we follow [2] for the terminologies and notations not defined here. Let G be a planar graph which has been embedded in the plane. We use $V(G), E(G)$, $F(G), \Delta(G)$ and $\delta(G)$ (or simply V, E, F, Δ and δ) to denote the vertex set, the edge set, the face set, the maximum degree and the minimum degree of G, respectively. A k-cycle is a cycle of length k, two cycles are said to be intersecting if they are incident with a common vertex, and adjacent if they share at least one edge.

A k-total-coloring of a graph G is a coloring of $V \cup E$ using k colors such that no two adjacent or incident elements receive the same color. A graph is totally k-colorable if it admits a k-total-coloring. The total chromatic number $\chi^{\prime \prime}(G)$ of G is the smallest integer k such that G is totally k-colorable. It's clear that $\chi^{\prime \prime}(G) \geq \Delta+1$. Behzad [1] and Vizing [15] independently posed the famous conjecture, which is known as the Total Coloring Conjecture (TCC).

Conjecture A. For any graph $G, \Delta+1 \leq \chi^{\prime \prime}(G) \leq \Delta+2$.

[^0]This conjecture was confirmed for $\Delta \leq 5$ (see [24]). For planar graphs, the only open case is $\Delta=6$ (see [10, 12]). Moreover, if G is a planar graph with maximum degree $\Delta \geq 9$, then $\chi^{\prime \prime}(G)=\Delta+1$ (see [3, 11, 22]). However, for $4 \leq \Delta \leq 8$, it's unknown if every planar graph with maximum degree Δ is totally $(\Delta+1)$-colorable. The study of this has been attracted considerable attention. Some related results can be found in [4-9, 13, 14, 16-23]. Wang, Sun, et al. [23] proved that planar graphs with $\Delta \geq 7$ and without 5 -cycles with chords are totally $(\Delta+1)$-colorable. Wang and Wu [16] proved that if G is a planar graph with $\Delta \geq 7$ and without intersecting 5 -cycles, then $\chi^{\prime \prime}(G)=\Delta+1$. In this paper, we get the following theorem.

Theorem 1. If G is a planar graph with $\Delta \geq 7$ and without adjacent 5 -cycles, then $\chi^{\prime \prime}(G)=\Delta+1$.

For convenience, we introduce some more notations and definitions. Let $G=(V, E, F)$ be a planar graph. A k-, k^{+}- or k^{-}-vertex is a vertex of degree k, at least k or at most k, respectively. The degree of f, denoted by $d(f)$, is the number of edges incident with it, where each cut edge counts twice. The notations of k-, k^{+}- or k^{-}-face are defined analogously as for the vertices. A k-face with consecutive vertices $v_{1}, v_{2}, \ldots, v_{k}$ along its boundary is often said to be a $\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{k}\right)\right)$-face. For $v \in V(G)$, we use $N(v)$ to denote the set of vertices which are adjacent to $v, n_{i}(v)$ to denote the number of i-vertices adjacent to $v, f_{i}(v)$ to denote the number of i-faces incident with v.

2. Reducible configurations

In [19], Theorem 1 was proved for $\Delta \geq 8$. So it suffices to consider the case that $\Delta=7$. Let $G=(V, E, F)$ be a minimal counterexample to Theorem 1 in terms of vertices and edges. Then every proper subgraph of G is totally 8 -colorable. Let $L=\{1,2, \ldots, 8\}$ be the color set for simplicity. We first give some lemmas for G.

Lemma $2([3,6,13])$. The graph G has the following properties:
(a) G is 2-connected. Hence $\delta(G) \geq 2$ and the boundary of each face is exactly a cycle.
(b) Let $u v \in E(G)$. If $d(u) \leq 3$, then $d_{G}(u)+d_{G}(v) \geq \Delta+2=9$. Hence the two neighbors of a 2-vertex are 7-vertices; and the three neighbors of a 3-vertex are 6^{+}-vertices.
(c) G contains no even cycle $\left(v_{1}, v_{2}, \ldots, v_{2 t}\right)$ such that $d\left(v_{1}\right)=d\left(v_{3}\right)=$ $\cdots=d\left(v_{2 t-1}\right)=2$.
(d) G has no (4, 4, 7^{-})-face.
(e) If v is a 7-vertex of G with $n_{2}(v) \geq 1$, then $n_{4^{+}}(v) \geq 1$.

Note that in all figures of the paper, the vertices marked by \bullet have no other neighbors in G other than those shown.

(1)

(2)

(6)

(${ }^{(4)}$

(7)

(8)

(9)

(1)

(II)

(12)

(13)

(4)

(15)

(6)

Figure 1. Reducible configurations
Lemma 3. G contains no subgraph isomorphic to the configurations depicted in Fig. 1.

The proof that G contains no configurations depicted in Fig. 1(1)-(16) can be found in $[3,5,8,11,16,23]$.

Let φ be a (partial) 8-total-coloring of G. For each element $x \in V \cup E$, we denote by $C(x)$ the set of colors of vertices and edges incident or adjacent to x. If $v \in V$, we set $S(v):=\{\varphi(u v), u \in N(v)\}$ and $\bar{S}(v):=S(v) \cup \varphi(v)$. Call φ is nice if only some 3^{-}-vertices are not colored. Note that every nice coloring can be greedily extended to a 8 -total-coloring of G, since each 3^{-}-vertex has at most 6 forbidden colors. Therefore, in the rest of this paper, we shall always suppose that such vertices are colored at the very end.
Lemma 4. G has no subgraph isomorphic to the configurations depicted in Fig. 2.

Proof. (1) On the contrary, suppose G contains a configuration as depicted in Fig. 2(1). By the minimality of $G, G^{\prime}=G-v v_{1}$ has a proper 8-total-coloring φ. Without loss of generality, suppose that $\varphi\left(v v_{i}\right)=i(i=2,3, \ldots, 7)$ and $\varphi(v)=8$. If $\varphi\left(v_{1} x\right) \neq 1$, we can color $v v_{1}$ with 1 to obtain a nice coloring of G,

(1)

(2)

(3)

(4)

6) $d(v)=6$

Figure 2. Reducible configurations
a contradiction. Thus $\varphi\left(v_{1} x\right)=1$. Moreover, we infer that $\varphi\left(v_{3} z\right)=1$. Since otherwise, we can recolor $v v_{3}$ with 1 , and color $v v_{1}$ with 3 , a contradiction. Similarly, $\varphi\left(v_{4} w\right)=\varphi\left(v_{2} y\right)=1$. First we recolor the edges $v_{2} y$ and $v_{3} z$ with $\varphi(y z)$ and $y z$ with 1 . In the following, we split the proof into three cases.
Case 1. $\varphi(y z)=2$. Then we can recolor $v v_{2}$ with 1 , and color $v v_{1}$ with 2 .
Case 2. $\varphi(y z)=3$. If $\varphi\left(v_{2} x\right) \neq 3$, then we can recolor $v v_{3}$ with 1 , and color $v v_{1}$ with 3 . Otherwise, we can interchange the colors of $v_{1} x$ and $v_{2} x$, and recolor $v v_{3}$ with $1, v v_{4}$ with 3 , and color $v v_{1}$ with 4 .
Case 3. $\varphi(y z) \notin\{2,3\}$. Then we interchange the colors of $v_{1} x$ and $v_{2} x$, and color $v v_{1}$ with 1 , a contradiction.
(2) Suppose G contains a configuration as depicted in Fig. 2(2). Then $G^{\prime}=$ $G-v v_{1}$ has a proper 8-total-coloring φ. Without loss of generality, suppose that $\varphi\left(v v_{i}\right)=i(i=2,3, \ldots, 7)$ and $\varphi(v)=8$. Obviously, $\varphi\left(v_{1} x_{1}\right)=1$. If $1 \notin S\left(v_{2}\right)$, we can recolor $v v_{2}$ with 1 , and color $v v_{1}$ with 2 to obtain a nice coloring of G, a contradiction. Thus $\varphi\left(v_{2} x_{2}\right)=1$. Similarly, $\varphi\left(v_{3} x_{3}\right)=\varphi\left(v_{4} x_{4}\right)=\varphi\left(v_{5} x_{5}\right)=1$. First we recolor $v_{2} x_{2}$ and $v_{3} x_{3}$ with $\varphi\left(x_{2} x_{3}\right)$ and $x_{2} x_{3}$ with 1 . In the following, we split the proof into three cases.
Case 1. $\varphi\left(x_{2} x_{3}\right)=2$. If $\varphi\left(x_{3} x_{4}\right) \neq 2$, we can recolor $v v_{2}$ with 1 , and color $v v_{1}$ with 2 . Otherwise, then interchange the colors of $v_{3} x_{4}$ and $v_{4} x_{4}$, and recolor $v v_{2}$ with 1 , color $v v_{1}$ with 2 .
Case 2. $\varphi\left(x_{2} x_{3}\right)=3$. If $\varphi\left(v_{2} x_{1}\right) \neq 3$, then recolor $v v_{3}$ with 1 , and color $v v_{1}$ with 3 . Otherwise, then interchange the colors of $v_{2} x_{1}$ and $v_{1} x_{1}$, and recolor $v v_{3}$ with $1, v v_{4}$ with 3 , color $v v_{1}$ with 4 .
Case 3. $\varphi\left(x_{2} x_{3}\right) \notin\{2,3\}$. Then interchange the colors of $v_{2} x_{1}$ and $v_{1} x_{1}$, and also of $v_{3} x_{4}$ and $v_{4} x_{4}$. If $\varphi\left(v_{3} x_{4}\right) \neq 4$, then color $v v_{1}$ with 1 . If $\varphi\left(v_{3} x_{4}\right)=4$, $\varphi\left(v_{2} x_{1}\right) \neq 4$, then recolor $v v_{4}$ with 1 , and color $v v_{1}$ with 4 . If $\varphi\left(v_{3} x_{4}\right)=$ $\varphi\left(v_{2} x_{1}\right)=4$, then recolor $v v_{4}$ with $1, v v_{5}$ with 4 , and color $v v_{1}$ with 5 .
(3) suppose G contains a configuration as depicted in Fig. 2(3). Consider a nice coloring φ of $G^{\prime}=G-v v_{1}$. Without loss of generality, suppose that $\varphi\left(v v_{i}\right)=i(i=2,3, \ldots, 7)$ and $\varphi(v)=8$. Obviously, $\varphi\left(v_{1} x_{1}\right)=1$. If $1 \notin S\left(v_{2}\right)$, then recolor $v v_{2}$ with 1 , and color $v v_{1}$ with 2 . Thus we can get a nice coloring of G, a contradiction. Hence $\varphi\left(v_{2} v_{3}\right)=1$. Similarly, $\varphi\left(v_{4} x_{2}\right)=1$. Now we
interchange the colors of $v v_{3}$ and $v_{2} v_{3}$. If $\varphi\left(v_{2} x_{1}\right) \neq 3$, then color $v v_{1}$ with 3 . Otherwise, then interchange the colors of $v_{2} x_{1}$ and $v_{1} x_{1}$, and recolor $v v_{4}$ with 3 , color $v v_{1}$ with 4 .
(4) The proof is similar to the previous case, we omit here.
(5) suppose G contains a configuration as depicted in Fig. 2(5). Consider a nice coloring φ of $G^{\prime}=G-v v_{1}$. Without loss of generality, suppose that $\varphi\left(v v_{i}\right)=i+1(i=2,3, \ldots, 6), \varphi(v)=8$, and $\varphi\left(v_{6} v_{1}\right)=1, \varphi\left(v_{1} v_{2}\right)=2$. We split the proof into two cases.
Case 1. $\varphi\left(v_{2} x\right) \neq 4$.
Suppose $2 \notin S(x)$. First we interchange the colors of $v_{2} x$ and $v_{2} v_{1}$. If $\varphi\left(v_{2} x\right) \neq 1$, then color $v v_{1}$ with 2 . Otherwise, then interchange the colors of $v_{1} v_{6}$ and $v v_{6}$, and color $v v_{1}$ with 2.

Suppose $2 \in S(x), 3 \notin S(x)$. First recolor $v_{2} x$ with $3, v_{1} v_{2}$ with $\varphi\left(v_{2} x\right)$, and recolor $v v_{2}$ with 2. If $\varphi\left(v_{2} x\right) \neq 1$, then color $v v_{1}$ with 3 . Otherwise, then interchange the colors of $v_{1} v_{6}$ and $v v_{6}$, and color $v v_{1}$ with 3.

Suppose $2 \in S(x), 3 \in S(x)$. Without loss of generality, let $\varphi\left(v_{3} x\right)=$ $2, \varphi\left(x x_{1}\right)=3$. We can interchange the colors of $v v_{3}$ and $v_{3} x$, and color $v v_{1}$ with 4.
Case 2. $\varphi\left(v_{2} x\right)=4$.
If $2 \notin S(x)$, then we interchange the colors of $v_{2} x$ and $v_{2} v_{1}$, and color $v v_{1}$ with 2. If $2 \in S(x), 3 \notin S(x)$, then we recolor $v_{2} x$ with $3, v_{1} v_{2}$ with $4, v v_{2}$ with 2 , and color $v v_{1}$ with 3 .

If $2 \in S(x), 3 \in S(x)$, then without loss of generality, let $\varphi\left(v_{3} x\right)=2$, $\varphi\left(x x_{1}\right)=3$.
Subcase 2.1. $2 \notin S(y)$.
First interchange the colors of $v_{3} x$ and $v_{3} y$. If $\varphi\left(v_{3} y\right)=3$, then recolor $v v_{3}$ with $3, v_{3} x$ with $4, v_{2} x$ with $2, v v_{2}$ with $4, v_{1} v_{2}$ with 3 , and color $v v_{1}$ with 2 . Otherwise, then interchange the colors of $v_{1} v_{2}$ and $v_{2} x$, and color $v v_{1}$ with 2.
Subcase 2.2. $2 \in S(y)$. Then $\varphi\left(v_{4} y\right)=2$ or $\varphi\left(y y_{1}\right)=2$.
Subcase 2.2.1. $\varphi\left(v_{4} y\right)=2$.
Suppose $\varphi\left(v_{3} y\right) \neq 3$. First interchange the colors of $v_{3} y$ and $v_{3} x$. If $\varphi\left(y y_{1}\right)=$ 4 , then interchange the colors of $v_{4} y$ and $v v_{4}$, and color $v v_{1}$ with 5 . Otherwise, then recolor $v_{3} y$ with $4, v v_{3}$ with 2 , and color $v v_{1}$ with 4 .

Suppose $\varphi\left(v_{3} y\right)=3, \varphi\left(y y_{1}\right)=4$. Then interchange the colors of $v v_{4}$ and $v_{4} y$, and color $v v_{1}$ with 5 .

Suppose $\varphi\left(v_{3} y\right)=3, \varphi\left(y y_{1}\right) \neq 4$. Then interchange the colors of $v v_{3}$ and $v_{3} y$, and also of $v v_{2}$ and $v_{1} v_{2}$, and color $v v_{1}$ with 4 .

Subcase 2.2.2. $\varphi\left(y y_{1}\right)=2$.
Suppose $\varphi\left(v_{3} y\right) \neq 3$. First we recolor $v_{3} x$ with $\varphi\left(v_{3} y\right), v_{3} y$ with 4 , and $v v_{3}$ with 2. If $\varphi\left(v_{4} y\right)=4$, then interchange the colors of $v_{4} y$ and $v v_{4}$, and color $v v_{1}$ with 5 . Otherwise, we color $v v_{1}$ with 4.

Suppose $\varphi\left(v_{3} y\right)=3, \varphi\left(v_{4} y\right)=4$. Then we interchange the colors of $v v_{4}$ and $v_{4} y$, and also of $v v_{3}$ and $v_{3} y$, and $v v_{2}$ and $v_{1} v_{2}$. Finally, we color $v v_{1}$ with 5 .

Suppose $\varphi\left(v_{3} y\right)=3, \varphi\left(v_{4} y\right) \neq 4$. Then we interchange the colors of $v v_{3}$ and $v_{3} y$, and also of $v v_{2}$ and $v_{1} v_{2}$. Finally, we color $v v_{1}$ with 4 . Thus we can obtain a nice coloring of G, a contradiction.

3. Discharging

By Euler's formula $|V|-|E|+|F|=2$, we have

$$
\begin{equation*}
\sum_{v \in V}(2 d(v)-6)+\sum_{f \in F}(d(f)-6)=-12<0 \tag{1}
\end{equation*}
$$

We define $c h$ to be the initial charge. Let $\operatorname{ch}(v)=2 d(v)-6$ for each $v \in V(G)$ and $\operatorname{ch}(f)=d(f)-6$ for each $f \in F(G)$. In the following, we will reassign a new charge denoted by $c h^{\prime}(x)$ to each $x \in V(G) \cup F(G)$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

$$
\begin{equation*}
\sum_{x \in V(G) \cup F(G)} c h^{\prime}(x)=\sum_{x \in V(G) \cup F(G)} c h(x)=-12 . \tag{2}
\end{equation*}
$$

In the following, we will show that $c h^{\prime}(x) \geq 0$ for each $x \in V(G) \cup F(G)$, a contradiction to (2), which completes the proof.

For a k-face $f=v_{1} v_{2} \ldots v_{k}$, we use $\left(d\left(v_{1}\right), d\left(v_{2}\right), \ldots, d\left(v_{k}\right)\right) \rightarrow\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ to denote the vertex v_{i} sends f the amount of charge c_{i} for $i=1,2, \ldots, k$.

Our discharging rules are defined as follows.
R1. Each 2-vertex receives 1 from each of its neighbors.
R2. Suppose $f=v_{1} v_{2} v_{3}$ is a 3 -face, let

$$
\begin{aligned}
& \left(3^{-}, 6^{+}, 6^{+}\right) \rightarrow\left(0, \frac{3}{2}, \frac{3}{2}\right), \\
& \left(4,5^{+}, 5^{+}\right) \rightarrow\left(\frac{2}{3}, \frac{7}{6}, \frac{7}{6}\right), \\
& \left(5^{+}, 5^{+}, 5^{+}\right) \rightarrow(1,1,1) .
\end{aligned}
$$

R3. Suppose $f=v_{1} v_{2} v_{3} v_{4}$ is a 4 -face, let
$\left(3^{-}, 6^{+}, 3^{-}, 6^{+}\right) \rightarrow(0,1,0,1)$,
$\left(3^{-}, 6^{+}, 4,6^{+}\right) \rightarrow\left(0, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}\right)$,
$\left(3^{-}, 6^{+}, 5,6^{+}\right) \rightarrow\left(0, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$,
$\left(3^{-}, 6^{+}, 6^{+}, 6^{+}\right) \rightarrow\left(0, \frac{1}{2}, 1, \frac{1}{2}\right)$, $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}\right) \rightarrow\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$.
R4. Suppose $f=v_{1} v_{2} v_{3} v_{4} v_{5}$ is a 5 -face, let $\left(3^{-}, 6^{+}, 6^{+}, 3^{-}, 6^{+}\right) \rightarrow\left(0, \frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3}\right)$, $\left(3^{-}, 6^{+}, 4^{+}, 4^{+}, 6^{+}\right) \rightarrow\left(0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$, $\left(4^{+}, 4^{+}, 4^{+}, 4^{+}, 4^{+}\right) \rightarrow\left(\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\right)$.
The rest of this paper is to check that $c h^{\prime}(x) \geq 0$ for each $x \in V(G) \cup F(G)$.

It's obvious that $c h^{\prime}(f) \geq 0$ for all $f \in F$ and $c h^{\prime}(v) \geq 0$ for all 2-vertices $v \in V$ by Lemma 2 and our discharging rules. So we only need to check that $c h^{\prime}(v) \geq 0$ for all 3^{+}-vertices in G.

If $d(v)=3$, then $c h^{\prime}(v)=\operatorname{ch}(v)=0$.
If $d(v)=4$, then $f_{3}(v) \leq 3$. If $f_{3}(v)=3$, then $f_{4}(v)=f_{5}(v)=0$. Thus $c h^{\prime}(v) \geq c h(v)-\frac{2}{3} \times 3=0$. If $f_{3}(v)=2$ and the two 3 -faces are adjacent, then $f_{4}(v)+f_{5}(v) \leq 1$. Otherwise, if the two 3 -faces are not adjacent, then $f_{4}(v)=0$. Thus $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-\max \left\{\frac{2}{3} \times 2+\frac{1}{2}, \frac{2}{3} \times 2+\frac{1}{4} \times 2\right\}=\frac{1}{6}>0$. If $f_{3}(v)=1$, then $f_{4}(v) \leq 2$. Thus $c h^{\prime}(v) \geq \operatorname{ch}(v)-\frac{2}{3}-\frac{1}{2} \times 2-\frac{1}{4}=\frac{1}{12}>0$. If $f_{3}(v)=0$, then $c h^{\prime}(v) \geq c h(v)-\frac{1}{2} \times 4=0$.

If $d(v)=5$, then $f_{3}(v) \leq 3$. If $f_{3}(v)=3$, then $f_{4}(v)=0$. Thus $c h^{\prime}(v) \geq$ $\operatorname{ch}(v)-\frac{7}{6} \times 3-\frac{1}{4} \times 2=0$. If $f_{3}(v)=2$, then $f_{4}(v) \leq 2$. Thus $c h^{\prime}(v) \geq \operatorname{ch}(v)-$ $\frac{7}{6} \times 2-\frac{2}{3} \times 2-\frac{1}{4}=\frac{1}{12}>0$. If $f_{3}(v) \leq 1$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-\frac{7}{6}-\frac{2}{3} \times 4=\frac{1}{6}>0$.

If $d(v)=6$, then $f_{3}(v) \leq 4$. If $f_{3}(v)=4$, then $f_{4}(v)=0$. And by Lemma $3(1)$, we can get $n_{3}(v) \leq 1$. So $c h^{\prime}(v) \geq c h(v)-\frac{3}{2} \times 2-\frac{7}{6} \times 2-\frac{1}{3} \times 2=0$. If $f_{3}(v)=3$, then $f_{4}(v) \leq 1$. Thus $c h^{\prime}(v) \geq \operatorname{ch}(v)-\frac{3}{2} \times 2-\frac{7}{6}-1-\frac{2}{3}=\frac{1}{6}>0$ by Lemma 3. If $f_{3}(v)=2$, then $f_{4}(v) \leq 3$. And if the two 3 -faces are adjacent, then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-\max \left\{\frac{3}{2}+\frac{7}{6}+3+\frac{1}{3}, \frac{3}{2} \times 2+1 \times 2+\frac{1}{2}+\frac{1}{3}, \frac{3}{2} \times 2+1 \times\right.$ $\left.2+\frac{1}{3} \times 2\right\}=0$ by Lemmas 3(1), 4(5) and our discharging rules. Otherwise, $c h^{\prime}(v) \geq c h(v)-\frac{3}{2}-\frac{7}{6}-3-\frac{1}{3}=0$ by Lemma 3(1). If $f_{3}(v) \leq 1$, then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-\max \left\{\frac{3}{2}+4+\frac{1}{3}, 6\right\}=0$.

If $d(v)=7$, this situation is very complicated. For convenience, we introduce some more notations and definitions. An l-fan (or simply F_{l}) is a configuration consisting of l consecutive faces around v and their edges incident with v, starting and ending with (2,7)-edges, and containing no other (2,7)-edge incident with v. An l-fan with consecutive faces $f_{1}, f_{2}, \ldots, f_{l}$ is often said to be a $\left(k_{1}^{+}, k_{2}^{+}, \ldots, k_{l}^{+}\right)$-fan if $d\left(f_{1}\right) \geq k_{1}, d\left(f_{2}\right) \geq k_{2}, \ldots, d\left(f_{l}\right) \geq k_{l}$. And we use $\tau(v \rightarrow x)$ to denote the sum of the charges that v sends to x.
Lemma 5. (1) $\tau\left(v \rightarrow F_{2}\right) \leq \frac{3}{2}$. Especially, if F_{2} is a (4,4)-fan and incident with a 6^{+}-neighbor of v, or if F_{2} is a $(4,5)$-fan and v is adjacent to at least three 2-vertices, or if F_{2} is a $\left(4^{+}, 6^{+}\right)$-fan or a $\left(5^{+}, 5^{+}\right)$-fan, then $\tau\left(v \rightarrow F_{2}\right) \leq 1$.
(2) $\tau\left(v \rightarrow F_{3}\right) \leq \frac{5}{2}$. Especially, if F_{3} is a $(4,5,4)$-fan and v is adjacent to at least three 2-vertices, or if F_{3} is a $\left(4^{+}, 6^{+}, 4^{+}\right)$-fan, or a $\left(4^{+}, 4^{+}, 6^{+}\right)$-fan, or a $\left(4^{+}, 5^{+}, 5^{+}\right)$-fan, or a $\left(5^{+}, 4^{+}, 5^{+}\right)$-fan, or if F_{3} is a $(4,4,4)$-fan and incident with two 4^{+}-neighbors of v or at least a 6^{+}-neighbor of v, then $\tau\left(v \rightarrow F_{3}\right) \leq 2$.
(3) $\tau\left(v \rightarrow F_{4}\right) \leq \frac{15}{4}$. Especially, if F_{4} contains at most one 3-face, then $\tau\left(v \rightarrow F_{4}\right) \leq \frac{7}{2}$.
(4) $\tau\left(v \rightarrow F_{5}\right) \leq \frac{29}{6}$. Especially, if F_{5} contains exactly three 3-faces or at most one 3-face, then $\tau\left(v \rightarrow F_{5}\right) \leq \frac{9}{2}$.
(5) $\tau\left(v \rightarrow F_{6}\right) \leq 6$.

Proof. (1) Suppose F_{2} is a 2-fan incident with v. Then it must be a $\left(4^{+}, 4^{+}\right)$fan by Lemma $3(2)$. Let u be the 3^{+}-neighbor of v that incident with F_{2}. If
F_{2} is a (4,4)-fan, then $\tau\left(v \rightarrow F_{2}\right) \leq \frac{3}{4} \times 2=\frac{3}{2}$ by Lemma 3(7). Otherwise, $\tau\left(v \rightarrow F_{2}\right) \leq 1+\frac{1}{3}=\frac{4}{3}<\frac{3}{2}$. And especially, if F_{2} is a (4, 4)-fan and $d(u) \geq 6$, then $\tau\left(v \rightarrow F_{2}\right) \leq \frac{1}{2} \times 2=1$ by our discharging rules. If F_{2} is a $(4,5)$-fan and v is adjacent to at least three 2-vertices, then $\tau\left(v \rightarrow F_{2}\right) \leq \max \left\{\frac{3}{4}+\frac{1}{4}, \frac{1}{2}+\frac{1}{3}\right\}=1$ by Lemma $4(1)$. The rest of the proof is obvious by our discharging rules.
(2) Suppose F_{3} is a 3 -fan incident with v, and f_{1}, f_{2}, f_{3} are the three consecutive faces. Let $v u$ be the common edge between f_{1} and f_{2}, and $v w$ be the common edge between f_{2} and f_{3}. Without loss of generality, we can assume that $d\left(f_{1}\right) \leq d\left(f_{3}\right)$. If $d\left(f_{2}\right)=3, d\left(f_{1}\right)=4$, then $d\left(f_{3}\right) \geq 6$. Thus $\tau\left(v \rightarrow F_{3}\right) \leq$ $\max \left\{\frac{3}{4}+\frac{7}{6}, \frac{3}{2}+\frac{1}{2}\right\} \leq 2<\frac{5}{2}$ by Lemma $3(11)$. If $d\left(f_{2}\right)=3, d\left(f_{1}\right)=5$, then $\tau\left(v \rightarrow F_{3}\right) \leq \frac{3}{2}+\frac{2}{3}<\frac{5}{2}$. Otherwise, $\tau\left(v \rightarrow F_{3}\right) \leq \max \left\{\frac{3}{2}, \frac{3}{4} \times 2+1,2+\frac{1}{3}\right\}=\frac{5}{2}$ by Lemma 3(8). Especially, if F_{3} is a $(4,5,4)$-fan and v is adjacent to at least three 2-vertices, then $\tau\left(v \rightarrow F_{3}\right) \leq \max \left\{1+\frac{3}{4}+\frac{1}{4}, 1+\frac{2}{3}+\frac{1}{3}, \frac{3}{4} \times 2+\frac{1}{3}\right\} \leq 2$ by Lemma $4(2)$. If F_{3} is a (4, 4, 4)-fan and incident with two 4^{+}-neighbors of v or at least a 6^{+}-neighbor of v, then $\tau\left(v \rightarrow F_{3}\right) \leq \max \left\{\frac{3}{4} \times 2+\frac{1}{2}, \frac{1}{2} \times 2+1\right\}=2$ by our discharging rules. The rest of the proof is obvious, we omit here.
(3) Suppose F_{4} is a 4 -fan incident with v. Then F_{4} contains at most two 3 -faces. If F_{4} contains exactly two 3 -faces, then it contains at most one 4 -face. Thus $\tau\left(v \rightarrow F_{4}\right) \leq \max \left\{\frac{3}{4}+\frac{7}{6}+\frac{3}{2}+\frac{1}{3}, \frac{3}{2} \times 2+\frac{2}{3}\right\}=\frac{15}{4}$ by Lemmas $3(5), 3(11)$ and our discharging rules. Otherwise, $\tau\left(v \rightarrow F_{4}\right) \leq \max \left\{2+\frac{3}{2}, \frac{3}{2}+1+\frac{2}{3}, \frac{3}{4} \times\right.$ $\left.2+2,3+\frac{1}{3}\right\}=\frac{7}{2}$ by Lemma 3(9).
(4) Suppose F_{5} is a 5 -fan incident with v. Then F_{5} contains at most three 3faces. If F_{5} contains exactly three 3 -faces, then it contains no 4 -face and 5 -face. Thus $\tau\left(v \rightarrow F_{5}\right) \leq \max \left\{1+\frac{3}{2} \times 2, \frac{3}{2}+\frac{7}{6} \times 2\right\}=4$ by Lemma 3(5). If F_{5} contains exactly two 3 -faces, then it contains at most two 4 -faces. Thus $\tau\left(v \rightarrow F_{5}\right) \leq$ $\max \left\{\frac{7}{6}+\frac{3}{2}+\frac{3}{4}+1+\frac{1}{3}, \frac{3}{2} \times 2+\frac{3}{4} \times 2+\frac{1}{3}, \frac{3}{2} \times 2+1+\frac{1}{3} \times 2\right\}=\frac{29}{6}$ by Lemmas 3(5), 3(11) and 3(12). Otherwise, $\tau\left(v \rightarrow F_{5}\right) \leq \max \left\{\frac{3}{2}+3, \frac{3}{2}+2+\frac{2}{3}, 4+\frac{1}{3}, \frac{3}{4} \times 2+3\right\}=\frac{9}{2}$ by Lemma $3(10)$.
(5) Suppose F_{6} is a 6 -fan incident with v. Then F_{6} contains at most three 3 -faces. If F_{6} is a $\left(4^{+}, 3,3,3,4^{+}, 4^{+}\right)$-fan, then $\tau\left(v \rightarrow F_{6}\right) \leq \max \left\{\frac{7}{6} \times 3+\frac{3}{4} \times 2+\right.$ $1,1+\frac{7}{6}+\frac{3}{2}+\frac{3}{4} \times 3, \frac{7}{6} \times 2+\frac{3}{2}+\frac{3}{4} \times 2+\frac{2}{3}, \frac{7}{6} \times 2+\frac{3}{2}+\frac{3}{4}+1+\frac{1}{3}, \frac{7}{6}+\frac{3}{2} \times 2+\frac{3}{4} \times 2+\frac{1}{3}, \frac{7}{6}+\frac{3}{2} \times$ $\left.2+1+\frac{2}{3}\right\}=6$ by Lemmas $3(5)$, (11), (12). If F_{6} is a $\left(4^{+}, 3,4^{+}, 3,3,4^{+}\right)$-fan, then $\tau\left(v \rightarrow F_{6}\right) \leq \max \left\{\frac{3}{2} \times 3+\frac{1}{3} \times 3, \frac{3}{2} \times 2+\frac{7}{6}+\frac{3}{4}+\frac{2}{3}, \frac{3}{2} \times 3+\frac{1}{3}+1, \frac{7}{6}+\frac{3}{2} \times 2+\frac{3}{4} \times 2\right\}=$ $\frac{35}{6} \leq 6$. If F_{6} contains exactly two 3 -faces, then F_{6} contains at most three 4 faces. Thus $\tau\left(v \rightarrow F_{6}\right) \leq \max \left\{\frac{3}{2} \times 2+2 \times 1+\frac{1}{3} \times 2, \frac{3}{2} \times 2+3 \times 1, \frac{7}{6}+\frac{3}{2}+\frac{3}{4}+\right.$ $\left.2+\frac{1}{3}, \frac{3}{2} \times 2+\frac{3}{4} \times 2+1+\frac{1}{3}\right\}=6$ by Lemmas $3(5)$, (11), (12), (13). Otherwise, $\tau\left(v \rightarrow F_{6}\right) \leq \max \left\{\frac{3}{2}+4 \times 1+\frac{1}{3}, 6 \times 1\right\}=6$.

Now we come back to check the new charge of 7 -vertex v and consider eight cases in the following.
Case 1. $n_{2}(v)=7$. Then $f_{6^{+}}(v)=7$ by Lemmas 2 and $3(6)$. So $c h^{\prime}(v) \geq$ $\operatorname{ch}(v)-7=1$.

Case 2. $n_{2}(v)=6$. Then $f_{3}(v)=0$ and $f_{6^{+}}(v) \geq 5$ by Lemmas $3(2)$ and $3(6)$. Thus $c h^{\prime}(v) \geq \operatorname{ch}(v)-6-2=0$.
Case 3. $n_{2}(v)=5$. Then there are three possibilities in which 2 -vertices are located. Various situations can see Fig. 3.

(1)

(2)

(3)

Figure 3. $n_{2}(v)=5$

For Fig. $3(1), f_{6^{+}}(v) \geq 4$. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-5-\frac{5}{2}=\frac{1}{2}>0$ by Lemma $5(2)$. For Fig. $3(2)$ and $3(3), f_{6^{+}}(v) \geq 3$. So $c h^{\prime}(v) \geq c h(v)-5-\frac{3}{2} \times 2=0$ by Lemma 5(1).
Case 4. $n_{2}(v)=4$. Then there are four possibilities in which 2-vertices are located. Various situations can see Fig. 4.

(1)

(2)

(3)

(4)

Figure 4. $n_{2}(v)=4$

For Fig. $4(1), f_{6^{+}}(v) \geq 3$. So $c h^{\prime}(v) \geq c h(v)-4-\frac{15}{4}=\frac{1}{4}>0$ by Lemma 5(3). For Fig. $4(2)$ and $4(3), f_{6^{+}}(v) \geq 2$ and v is incident with a 2 -fan and a 3fan. So $c h^{\prime}(v) \geq c h(v)-4-\frac{3}{2}-\frac{5}{2}=0$ by Lemmas 5(1) and 5(2). For Fig. 4(4), $f_{6^{+}}(v) \geq 1$ and v is incident with three 2 -fans. If they are all (4,4)-fan, then v is adjacent to a 6^{+}-vertex by Lemma $3(15)$. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-4-\frac{3}{2} \times 2-1=0$ by Lemma $5(1)$.
Case 5. $n_{2}(v)=3$. Then there are four possibilities in which 2 -vertices are located. Various situations can see Fig. 5.

For Fig. $5(1), f_{6^{+}}(v) \geq 2$. Then $c h^{\prime}(v) \geq c h(v)-3-\frac{29}{6}=\frac{1}{6}>0$ by Lemma 5(4). For Fig. 5(2), v is incident with a 2 -fan and a 4 -fan. If F_{4} contains at most one 3 -face, then $c h^{\prime}(v) \geq c h(v)-3-\frac{3}{2}-\frac{7}{2}=0$ by Lemmas 5(1) and 5(3). If F_{4} contains two 3 -faces and F_{2} is a $\left(4^{+}, 5^{+}\right)$-fan, then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-3-$ $1-\frac{15}{4}=\frac{1}{4}>0$ by Lemma 5. Otherwise, if F_{2} is a $(4,4)$-fan, then F_{4} must be a

(1)

(2)

(3)

(4)

Figure 5. $n_{2}(v)=3$
$\left(4^{+}, 3,3,6^{+}\right)$-fan. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-3-\frac{3}{2}-\max \left\{\frac{3}{4}+\frac{7}{6}+\frac{3}{2}, \frac{3}{2} \times 2+\frac{1}{3}\right\}=\frac{1}{12}>0$ by Lemmas 3(5) and 3(11). For Fig. 5(3), v is incident with two 3 -fans. Thus $c h^{\prime}(v) \geq c h(v)-3-\frac{5}{2} \times 2=0$ by Lemma 5(2). For Fig. 5(4), v is incident with a 3 -fan and two 2 -fans. Suppose F_{3} contains one 3 -face. If v is incident with two $(4,4)$-fan, then F_{3} must be a $\left(6^{+}, 3,6^{+}\right)$-fan. So $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-3-\frac{3}{2} \times 2-\frac{3}{2}=$ $\frac{1}{2}>0$ by Lemma 5(1). Otherwise, if v is incident with at least a $\left(4^{+}, 5^{+}\right)$-fan, then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-3-\frac{3}{2}-1-\frac{5}{2}=0$. Suppose F_{3} contains no 3 -face. If v is incident with two (4, 4)-fan, then F_{3} must be a $\left(4,4^{+}, 4\right)$-fan, or a $\left(4,4^{+}, 6^{+}\right)$fan, or a $\left(6^{+}, 4^{+}, 6^{+}\right)$-fan. Thus $c h^{\prime}(v) \geq c h(v)-3-\max \left\{\frac{3}{2} \times 2+2, \frac{3}{2}+1+\frac{5}{2}\right\}=0$ by Lemmas $3(8), 3(16)$ and Lemma 5 . Otherwise, v is incident with at least a $\left(4^{+}, 5^{+}\right)$-fan, then $c h^{\prime}(v) \geq c h(v)-3-\frac{3}{2}-1-\frac{5}{2}=0$.
Case 6. $n_{2}(v)=2$. Then there are three possibilities in which 2 -vertices are located. Various situations can see Fig. 6.

(l)

(2)

(3)

Figure 6. $n_{2}(v)=2$

For Fig. $6(1)$, if $d\left(f_{1}\right)=5$, then $d\left(f_{2}\right) \geq 6$ and $d\left(f_{7}\right) \geq 6$. Thus $c h^{\prime}(v) \geq$ $\operatorname{ch}(v)-2-\frac{3}{2} \times 3-1-\frac{1}{3}=\frac{1}{6}>0$. Otherwise, $c h^{\prime}(v) \geq \operatorname{ch}(v)-2-6=0$ by Lemma $5(5)$. For Fig. 6(2), v is incident with a 2 -fan and a 5 -fan. If F_{5} contains three 3-faces or at most one 3-face, then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-2-\frac{3}{2}-\frac{9}{2}=0$ by Lemma 5 . Suppose F_{5} contains exactly two 3 -faces. If F_{2} is a $\left(4^{+}, 6^{+}\right)$-fan or a $\left(5^{+}, 5^{+}\right)$-fan, then $c h^{\prime}(v) \geq c h(v)-2-1-\frac{29}{6}=\frac{1}{6}>0$ by Lemma 5 . Otherwise, if F_{2} is a $(4,4)$-fan or a $(4,5)$-fan, then $c h^{\prime}(v) \geq c h(v)-2-\frac{3}{2}-$ $\max \left\{\frac{3}{2} \times 2+1+\frac{1}{3}, \frac{3}{4}+1+\frac{7}{6}+\frac{3}{2}, \frac{3}{4} \times 2+\frac{3}{2} \times 2\right\}=0$ by Lemmas 3(5) and 3(12). For Fig. 6(3), v is incident with a 3 -fan and a 4 -fan. If F_{4} contains at most one 3 -face, then $c h^{\prime}(v) \geq c h(v)-2-\frac{7}{2}-\frac{5}{2}=0$ by Lemma 5 . Otherwise,
$c h^{\prime}(v) \geq \operatorname{ch}(v)-2-\max \left\{\frac{3}{2} \times 2+\frac{1}{3} \times 2+\frac{3}{2}, \frac{3}{2} \times 2+\frac{1}{3}+\frac{5}{2}, \frac{3}{2}+\frac{7}{6}+\frac{3}{4}+\frac{1}{3}+\frac{3}{2}, \frac{3}{2}+\right.$ $\left.\frac{7}{6}+\frac{3}{4}+\frac{5}{2}\right\}=\frac{1}{12}>0$ by Lemmas $3(5)$ and $3(11)$ and our discharging rules.
Case 7. $n_{2}(v)=1$. Note that $f_{3}(v) \leq 5$. Let u be the unique 2 -vertex adjacent to v. We split the proof into six cases.
Subcase 7.1. $f_{3}(v)=5$. Then $f_{4}(v)=f_{5}(v)=0$. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2}-$ $\frac{7}{6} \times 4=\frac{5}{6}>0$ by Lemmas 3(3) and 3(4).
Subcase 7.2. $f_{3}(v)=4$. Various situations are illustrated in Fig. 7.

(1)

(2)

(3)

Figure 7
If $u v$ is incident with a 3 -face, then the other three 3 -faces are not incident with 3 -vertices by Lemmas $3(3)$ and $3(4)$. For Fig. $7(1), f_{6^{+}}(v) \geq 1$, thus $c h^{\prime}(v) \geq c h(v)-1-\frac{3}{2}-\frac{7}{6} \times 3-2=0$. For Fig. $7(2)$ and $7(3), f_{4}(v) \leq 1$, thus $c h^{\prime}(v) \geq c h(v)-1-\frac{3}{2}-\frac{7}{6} \times 3-1-\frac{2}{3}=\frac{1}{3}>0$. Now suppose $u v$ is not incident with a 3-face. For Fig. $7(1), f_{6^{+}}(v) \geq 2$, thus $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 4-1=0$. For Fig. $7(2), f_{4}(v) \leq 1$, thus $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\max \left\{\frac{3}{2} \times 4+\frac{1}{3} \times 3, \frac{3}{2} \times 3+\right.$ $\left.\frac{7}{6}+1+\frac{1}{3}\right\}=0$ by Lemma $4(3)$.
Subcase 7.3. $f_{3}(v)=3$. Various situations are illustrated in Fig. 8 .

(2)

(3)

(4)

Figure 8
Suppose $u v$ is incident with a 3 -face. For Fig. $8(1), f_{6^{+}}(v) \geq 2$, thus $c h^{\prime}(v) \geq$ $\operatorname{ch}(v)-1-\frac{3}{2}-\frac{7}{6} \times 2-2=\frac{7}{6}>0$. For Fig. $8(2)-8(4), f_{4}(v) \leq 3$, thus $c^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2}-\frac{7}{6} \times 2-\max \left\{3,2+\frac{2}{3}\right\}=\frac{1}{6}>0$. Suppose $u v$ is not incident with a 3 -face. For Fig. $8(1), f_{6^{+}}(v) \geq 2$, thus $c h^{\prime}(v) \geq c h(v)-$ $1-\frac{3}{2} \times 3-2=\frac{1}{2}>0$. For Fig. 8(2) and $8(3), f_{4}(v) \leq 2$, thus $c h^{\prime}(v) \geq$ $\operatorname{ch}(v)-1-\frac{3}{2} \times 3-\max \left\{2+\frac{1}{3}, 1+\frac{1}{3} \times 3\right\}=\frac{1}{6}>0$. For Fig. $8(4), f_{4}(v) \leq 1$, thus $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 3-1-\frac{1}{3} \times 3=\frac{1}{2}>0$.
Subcase 7.4. $f_{3}(v)=2$. Various situations are illustrated in Fig. 9.

(1)

(2)

(3)

Figure 9

It's obvious that $f_{4}(v) \leq 4$. Suppose $u v$ is incident with a 3 -face. Then $c h^{\prime}(v) \geq c h(v)-1-\frac{3}{2}-\frac{7}{6}-4-\frac{1}{3}=0$ by Lemmas 3(3) and 3(4). Suppose $u v$ is not incident with a 3 -face. If $f_{4}(v) \leq 3$, then $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 2-$ $3-\frac{1}{3} \times 2=\frac{1}{3}>0$. Now we consider the case that $f_{4}(v)=4$. For Fig. 9(1), $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-1-\max \left\{\frac{3}{2} \times 2+\frac{3}{4} \times 2+2+\frac{1}{3}, \frac{3}{2}+\frac{7}{6}+4+\frac{1}{3}\right\}=0$ by Lemmas 3(5), 3(14) and Lemma 4(4). For Fig. 9(2) and 9(3), $f_{6^{+}}(v) \geq 1$. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2} \times 2-4=0$.
Subcase 7.5. $f_{3}(v)=1$. In this case, $f_{4}(v) \leq 5$. So $c h^{\prime}(v) \geq \operatorname{ch}(v)-1-\frac{3}{2}-$ $5-\frac{1}{3}=\frac{1}{6}>0$.
Subcase 7.6. $f_{3}(v)=0$. It's obvious that $c h^{\prime}(v) \geq c h(v)-1-7=0$.
Case 8. $n_{2}(v)=0$. In this case, $f_{3}(v) \leq 5$. If $f_{3}(v)=5$, then $f_{6^{+}}(v)=2$. Thus $\operatorname{ch}^{\prime}(v) \geq \operatorname{ch}(v)-\frac{3}{2} \times 5=\frac{1}{2}>0$. If $f_{3}(v)=4$, then $f_{4}(v) \leq 1$. Thus $c h^{\prime}(v) \geq \operatorname{ch}(v)-\frac{3}{2} \times 4-1-\frac{2}{3}=\frac{1}{3}>0$. If $1 \leq f_{3}(v) \leq 3$, then $f_{5^{+}}(v) \geq 1$. Thus $c h^{\prime}(v) \geq \operatorname{ch}(v)-\frac{3}{2} \times f_{3}(v)-\left(6-f_{3}(v)\right) \times 1-\frac{1}{3}=\frac{5}{3}-\frac{1}{2} \times f_{3}(v)>0$. If $f_{3}(v)=0$, then $c h^{\prime}(v) \geq \operatorname{ch}(v)-7=1>0$.

Hence we complete the proof of Theorem 1.
Acknowledgement. I would like to thank the referees for their valuable suggestions.

References

[1] M. Behzad, Graphs and their chromatic numbers, Ph.D. thesis, Michigan State University, 1965.
[2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
[3] O. V. Borodin, A. V. Kostochka, and D. R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997), no. 1, 53-59.
[4] , Total colorings of planar graphs with large girth, Europ. J. Combinatorics 19 (1998), 19-24.
[5] J. S. Cai, Total coloring of a planar graph without 7-cycles with chords, Acta Math. Appl. Sin. 37 (2014), no. 2, 286-296.
[6] G. J. Chang, J. F. Hou, and N. Roussel, Local condition for planar graphs of maximum degree 7 to be 8-totally-colorable, Discrete Appl. Math. 159 (2011), no. 8, 760-768.
[7] J. Chang, H. J. Wang, and J. L. Wu, Total colorings of planar graphs with maximum degree 8 and without 5-cycles with two chords, Theoret. Comput. Sci. 476 (2013), 16-23.
[8] D. Z. Du, L. Shen, and Y. Q. Wang, Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally colorable, Discrete Appl. Math. 157 (2009), no. 13, 27782784.
[9] J. F. Hou, B. Liu, G. Z. Liu, and J. L. Wu, Total colorings of planar graphs without 6-cycles, Discrete Appl. Math. 159 (2011), no. 2-3, 157-163.
[10] A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996), no. 1-3, 199-214.
[11] L. Kowalik, J. S. Sereni, and R. S. k krekovski, Total-Coloring of plane graphs with maximum degree nine, SIAM J. Discrete Math. 22 (2008), no. 4, 1462-1479.
[12] D. P. Sanders and Y. Zhao, On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999), no. 1, 67-73.
[13] L. Shen and Y. Q. Wang, On the 7-total colorability of planar graphs with maximum degree 6 and without 4-cycles, Graphs Combin. 25 (2009), no. 3, 401-407.
[14] J. J. Tian, J. L. Wu, and H. J. Wang, Total colorings of planar graphs without adjacent chordal 5-cycles, Util. Math. 91 (2013), 13-23.
[15] V. G. Vizing, Some unresolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968), 117-134.
[16] B. Wang and J. L. Wu, Total colorings of planar graphs without intersecting 5-cycles, Discrete Appl. Math. 160 (2012), no. 12, 1815-1821.
[17] B. Wang, J. L. Wu, and H. J. Wang, Total colorings of planar graphs with maximum degree seven and without intersecting 3-cycles, Discrete Math. 311 (2011), no. 18-19, 2025-2030.
[18] H. J. Wang, B. Liu, and J. L. Wu, Total colorings of planar graphs without adjacent 4-cycles, Discrete Math. 312 (2012), no. 11, 1923-1926.
[19] H. J. Wang, L. D. Wu, and J. L. Wu, Total coloring of planar graphs with maximum degree 8, Theoret. Comput. Sci. 522 (2014), 54-61.
[20] H. J. Wang, L. D. Wu, W. L. Wu, P. M. Pardalos, and J. L. Wu, Minimum total coloring of planar graph, J. Global Optim. 60 (2014), no. 4, 777-791.
[21] P. Wang and J. Wu, A note on total colorings of planar graphs without 4-cycles, Discuss. Math. Graph Theory 24 (2004), no. 1, 125-135.
[22] W. Wang, Total chromatic number of planar graphs with maximum degree ten, J. Graph Theory 54 (2007), no. 2, 91-102.
[23] Y. Q. Wang, Q. Sun, X. Tao, and L. Shen, Plane graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable, Sci. China Math. 41 (2011), no. 1, 95-104.
[24] H. P. Yap, Total colourings of graphs, Lecture Notes in Mathematics, Springer, 1623, 1996.

School of Mathematics and Quantitative Economics
Shandong University of Finance and Economics
Jinan, 250014, P. R. China
E-mail address: xtandw@126.com

[^0]: Received January 5, 2015; Revised June 2, 2015.
 2010 Mathematics Subject Classification. 05C15.
 Key words and phrases. planar graph, total coloring, adjacent 5-cycle.
 This work was supported by National Natural Science Foundation of China(11401386), Natural Science Foundation of Shandong Province (ZR2013AM006) and A Project of Shandong Province Higher Educational Science and Technology Program(J14LI55).

