Bull. Korean Math. Soc. ${\bf 53}$ (2016), No. 1, pp. 139–151 http://dx.doi.org/10.4134/BKMS.2016.53.1.139

TOTAL COLORINGS OF PLANAR GRAPHS WITH MAXIMUM DEGREE AT LEAST 7 AND WITHOUT ADJACENT 5-CYCLES

XIANG TAN

ABSTRACT. A k-total-coloring of a graph G is a coloring of $V \cup E$ using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number $\chi''(G)$ of G is the smallest integer k such that G has a k-total-coloring. Let G be a planar graph with maximum degree Δ . In this paper, it's proved that if $\Delta \geq 7$ and G does not contain adjacent 5-cycles, then the total chromatic number $\chi''(G)$ is $\Delta + 1$.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. And we follow [2] for the terminologies and notations not defined here. Let G be a planar graph which has been embedded in the plane. We use V(G), E(G), F(G), $\Delta(G)$ and $\delta(G)$ (or simply V, E, F, Δ and δ) to denote the vertex set, the edge set, the face set, the maximum degree and the minimum degree of G, respectively. A k-cycle is a cycle of length k, two cycles are said to be intersecting if they are incident with a common vertex, and adjacent if they share at least one edge.

A k-total-coloring of a graph G is a coloring of $V \cup E$ using k colors such that no two adjacent or incident elements receive the same color. A graph is totally k-colorable if it admits a k-total-coloring. The total chromatic number $\chi''(G)$ of G is the smallest integer k such that G is totally k-colorable. It's clear that $\chi''(G) \ge \Delta + 1$. Behzad [1] and Vizing [15] independently posed the famous conjecture, which is known as the Total Coloring Conjecture (TCC).

Conjecture A. For any graph G, $\Delta + 1 \le \chi''(G) \le \Delta + 2$.

 $\bigodot 2016$ Korean Mathematical Society

Received January 5, 2015; Revised June 2, 2015.

 $^{2010\} Mathematics\ Subject\ Classification.\ 05C15.$

Key words and phrases. planar graph, total coloring, adjacent 5-cycle.

This work was supported by National Natural Science Foundation of China(11401386), Natural Science Foundation of Shandong Province (ZR2013AM006) and A Project of Shandong Province Higher Educational Science and Technology Program(J14LI55).

This conjecture was confirmed for $\Delta \leq 5$ (see [24]). For planar graphs, the only open case is $\Delta = 6$ (see [10, 12]). Moreover, if G is a planar graph with maximum degree $\Delta \geq 9$, then $\chi''(G) = \Delta + 1$ (see [3, 11, 22]). However, for $4 \leq \Delta \leq 8$, it's unknown if every planar graph with maximum degree Δ is totally ($\Delta + 1$)-colorable. The study of this has been attracted considerable attention. Some related results can be found in [4-9, 13, 14, 16-23]. Wang, Sun, et al. [23] proved that planar graphs with $\Delta \geq 7$ and without 5-cycles with chords are totally ($\Delta + 1$)-colorable. Wang and Wu [16] proved that if G is a planar graph with $\Delta \geq 7$ and without intersecting 5-cycles, then $\chi''(G) = \Delta + 1$. In this paper, we get the following theorem.

Theorem 1. If G is a planar graph with $\Delta \ge 7$ and without adjacent 5-cycles, then $\chi''(G) = \Delta + 1$.

For convenience, we introduce some more notations and definitions. Let G = (V, E, F) be a planar graph. A k-, k^+ - or k^- -vertex is a vertex of degree k, at least k or at most k, respectively. The degree of f, denoted by d(f), is the number of edges incident with it, where each cut edge counts twice. The notations of k-, k^+ - or k^- -face are defined analogously as for the vertices. A k-face with consecutive vertices v_1, v_2, \ldots, v_k along its boundary is often said to be a $(d(v_1), d(v_2), \ldots, d(v_k))$ -face. For $v \in V(G)$, we use N(v) to denote the set of vertices which are adjacent to $v, n_i(v)$ to denote the number of *i*-vertices adjacent to $v, f_i(v)$ to denote the number of *i*-faces incident with v.

2. Reducible configurations

In [19], Theorem 1 was proved for $\Delta \geq 8$. So it suffices to consider the case that $\Delta = 7$. Let G = (V, E, F) be a minimal counterexample to Theorem 1 in terms of vertices and edges. Then every proper subgraph of G is totally 8-colorable. Let $L = \{1, 2, ..., 8\}$ be the color set for simplicity. We first give some lemmas for G.

Lemma 2 ([3, 6, 13]). The graph G has the following properties:

- (a) G is 2-connected. Hence $\delta(G) \geq 2$ and the boundary of each face is exactly a cycle.
- (b) Let $uv \in E(G)$. If $d(u) \leq 3$, then $d_G(u) + d_G(v) \geq \Delta + 2 = 9$. Hence the two neighbors of a 2-vertex are 7-vertices; and the three neighbors of a 3-vertex are 6⁺-vertices.
- (c) G contains no even cycle $(v_1, v_2, ..., v_{2t})$ such that $d(v_1) = d(v_3) = \cdots = d(v_{2t-1}) = 2$.
- (d) G has no $(4, 4, 7^{-})$ -face.
- (e) If v is a 7-vertex of G with $n_2(v) \ge 1$, then $n_{4^+}(v) \ge 1$.

Note that in all figures of the paper, the vertices marked by \bullet have no other neighbors in G other than those shown.

TOTAL COLORINGS OF PLANAR GRAPHS

FIGURE 1. Reducible configurations

Lemma 3. G contains no subgraph isomorphic to the configurations depicted in Fig. 1.

The proof that G contains no configurations depicted in Fig. 1(1)-(16) can be found in [3, 5, 8, 11, 16, 23].

Let φ be a (partial) 8-total-coloring of G. For each element $x \in V \cup E$, we denote by C(x) the set of colors of vertices and edges incident or adjacent to x. If $v \in V$, we set $S(v) := \{\varphi(uv), u \in N(v)\}$ and $\overline{S}(v) := S(v) \cup \varphi(v)$. Call φ is nice if only some 3⁻-vertices are not colored. Note that every nice coloring can be greedily extended to a 8-total-coloring of G, since each 3⁻-vertex has at most 6 forbidden colors. Therefore, in the rest of this paper, we shall always suppose that such vertices are colored at the very end.

Lemma 4. G has no subgraph isomorphic to the configurations depicted in Fig. 2.

Proof. (1) On the contrary, suppose G contains a configuration as depicted in Fig. 2(1). By the minimality of G, $G' = G - vv_1$ has a proper 8-total-coloring φ . Without loss of generality, suppose that $\varphi(vv_i) = i$ (i = 2, 3, ..., 7) and $\varphi(v) = 8$. If $\varphi(v_1x) \neq 1$, we can color vv_1 with 1 to obtain a nice coloring of G,

FIGURE 2. Reducible configurations

a contradiction. Thus $\varphi(v_1x) = 1$. Moreover, we infer that $\varphi(v_3z) = 1$. Since otherwise, we can recolor vv_3 with 1, and color vv_1 with 3, a contradiction. Similarly, $\varphi(v_4w) = \varphi(v_2y) = 1$. First we recolor the edges v_2y and v_3z with $\varphi(yz)$ and yz with 1. In the following, we split the proof into three cases.

Case 1. $\varphi(yz) = 2$. Then we can recolor vv_2 with 1, and color vv_1 with 2.

Case 2. $\varphi(yz) = 3$. If $\varphi(v_2x) \neq 3$, then we can recolor vv_3 with 1, and color vv_1 with 3. Otherwise, we can interchange the colors of v_1x and v_2x , and recolor vv_3 with 1, vv_4 with 3, and color vv_1 with 4.

Case 3. $\varphi(yz) \notin \{2,3\}$. Then we interchange the colors of v_1x and v_2x , and color vv_1 with 1, a contradiction.

(2) Suppose G contains a configuration as depicted in Fig. 2(2). Then $G' = G - vv_1$ has a proper 8-total-coloring φ . Without loss of generality, suppose that $\varphi(vv_i) = i \ (i = 2, 3, ..., 7)$ and $\varphi(v) = 8$. Obviously, $\varphi(v_1x_1) = 1$. If $1 \notin S(v_2)$, we can recolor vv_2 with 1, and color vv_1 with 2 to obtain a nice coloring of G, a contradiction. Thus $\varphi(v_2x_2) = 1$. Similarly, $\varphi(v_3x_3) = \varphi(v_4x_4) = \varphi(v_5x_5) = 1$. First we recolor v_2x_2 and v_3x_3 with $\varphi(x_2x_3)$ and x_2x_3 with 1. In the following, we split the proof into three cases.

Case 1. $\varphi(x_2x_3) = 2$. If $\varphi(x_3x_4) \neq 2$, we can recolor vv_2 with 1, and color vv_1 with 2. Otherwise, then interchange the colors of v_3x_4 and v_4x_4 , and recolor vv_2 with 1, color vv_1 with 2.

Case 2. $\varphi(x_2x_3) = 3$. If $\varphi(v_2x_1) \neq 3$, then recolor vv_3 with 1, and color vv_1 with 3. Otherwise, then interchange the colors of v_2x_1 and v_1x_1 , and recolor vv_3 with 1, vv_4 with 3, color vv_1 with 4.

Case 3. $\varphi(x_2x_3) \notin \{2,3\}$. Then interchange the colors of v_2x_1 and v_1x_1 , and also of v_3x_4 and v_4x_4 . If $\varphi(v_3x_4) \neq 4$, then color vv_1 with 1. If $\varphi(v_3x_4) = 4$, $\varphi(v_2x_1) \neq 4$, then recolor vv_4 with 1, and color vv_1 with 4. If $\varphi(v_3x_4) = \varphi(v_2x_1) = 4$, then recolor vv_4 with 1, vv_5 with 4, and color vv_1 with 5.

(3) suppose G contains a configuration as depicted in Fig. 2(3). Consider a nice coloring φ of $G' = G - vv_1$. Without loss of generality, suppose that $\varphi(vv_i) = i \ (i = 2, 3, ..., 7) \text{ and } \varphi(v) = 8$. Obviously, $\varphi(v_1x_1) = 1$. If $1 \notin S(v_2)$, then recolor vv_2 with 1, and color vv_1 with 2. Thus we can get a nice coloring of G, a contradiction. Hence $\varphi(v_2v_3) = 1$. Similarly, $\varphi(v_4x_2) = 1$. Now we interchange the colors of vv_3 and v_2v_3 . If $\varphi(v_2x_1) \neq 3$, then color vv_1 with 3. Otherwise, then interchange the colors of v_2x_1 and v_1x_1 , and recolor vv_4 with 3, color vv_1 with 4.

(4) The proof is similar to the previous case, we omit here.

(5) suppose G contains a configuration as depicted in Fig. 2(5). Consider a nice coloring φ of $G' = G - vv_1$. Without loss of generality, suppose that $\varphi(vv_i) = i + 1$ (i = 2, 3, ..., 6), $\varphi(v) = 8$, and $\varphi(v_6v_1) = 1$, $\varphi(v_1v_2) = 2$. We split the proof into two cases.

Case 1. $\varphi(v_2 x) \neq 4$.

Suppose $2 \notin S(x)$. First we interchange the colors of v_2x and v_2v_1 . If $\varphi(v_2x) \neq 1$, then color vv_1 with 2. Otherwise, then interchange the colors of v_1v_6 and vv_6 , and color vv_1 with 2.

Suppose $2 \in S(x)$, $3 \notin S(x)$. First recolor v_2x with 3, v_1v_2 with $\varphi(v_2x)$, and recolor vv_2 with 2. If $\varphi(v_2x) \neq 1$, then color vv_1 with 3. Otherwise, then interchange the colors of v_1v_6 and vv_6 , and color vv_1 with 3.

Suppose $2 \in S(x)$, $3 \in S(x)$. Without loss of generality, let $\varphi(v_3x) = 2$, $\varphi(xx_1) = 3$. We can interchange the colors of vv_3 and v_3x , and color vv_1 with 4.

Case 2. $\varphi(v_2 x) = 4$.

If $2 \notin S(x)$, then we interchange the colors of v_2x and v_2v_1 , and color vv_1 with 2. If $2 \in S(x)$, $3 \notin S(x)$, then we recolor v_2x with 3, v_1v_2 with 4, vv_2 with 2, and color vv_1 with 3.

If $2 \in S(x)$, $3 \in S(x)$, then without loss of generality, let $\varphi(v_3 x) = 2$, $\varphi(xx_1) = 3$.

Subcase 2.1. $2 \notin S(y)$.

First interchange the colors of v_3x and v_3y . If $\varphi(v_3y) = 3$, then recolor vv_3 with 3, v_3x with 4, v_2x with 2, vv_2 with 4, v_1v_2 with 3, and color vv_1 with 2. Otherwise, then interchange the colors of v_1v_2 and v_2x , and color vv_1 with 2.

Subcase 2.2. $2 \in S(y)$. Then $\varphi(v_4y) = 2$ or $\varphi(yy_1) = 2$.

Subcase 2.2.1. $\varphi(v_4 y) = 2$.

Suppose $\varphi(v_3y) \neq 3$. First interchange the colors of v_3y and v_3x . If $\varphi(yy_1) = 4$, then interchange the colors of v_4y and vv_4 , and color vv_1 with 5. Otherwise, then recolor v_3y with 4, vv_3 with 2, and color vv_1 with 4.

Suppose $\varphi(v_3y) = 3$, $\varphi(yy_1) = 4$. Then interchange the colors of vv_4 and v_4y , and color vv_1 with 5.

Suppose $\varphi(v_3y) = 3$, $\varphi(yy_1) \neq 4$. Then interchange the colors of vv_3 and v_3y , and also of vv_2 and v_1v_2 , and color vv_1 with 4.

Subcase 2.2.2. $\varphi(yy_1) = 2$.

Suppose $\varphi(v_3y) \neq 3$. First we recolor v_3x with $\varphi(v_3y)$, v_3y with 4, and vv_3 with 2. If $\varphi(v_4y) = 4$, then interchange the colors of v_4y and vv_4 , and color vv_1 with 5. Otherwise, we color vv_1 with 4.

Suppose $\varphi(v_3y) = 3$, $\varphi(v_4y) = 4$. Then we interchange the colors of vv_4 and v_4y , and also of vv_3 and v_3y , and vv_2 and v_1v_2 . Finally, we color vv_1 with 5.

Suppose $\varphi(v_3y) = 3$, $\varphi(v_4y) \neq 4$. Then we interchange the colors of vv_3 and v_3y , and also of vv_2 and v_1v_2 . Finally, we color vv_1 with 4. Thus we can obtain a nice coloring of G, a contradiction.

3. Discharging

By Euler's formula |V| - |E| + |F| = 2, we have

(1)
$$\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -12 < 0.$$

We define ch to be the initial charge. Let ch(v) = 2d(v) - 6 for each $v \in V(G)$ and ch(f) = d(f) - 6 for each $f \in F(G)$. In the following, we will reassign a new charge denoted by ch'(x) to each $x \in V(G) \cup F(G)$ according to the discharging rules. Since our rules only move charges around, and do not affect the sum, we have

(2)
$$\sum_{x \in V(G) \cup F(G)} ch'(x) = \sum_{x \in V(G) \cup F(G)} ch(x) = -12.$$

In the following, we will show that $ch'(x) \ge 0$ for each $x \in V(G) \cup F(G)$, a contradiction to (2), which completes the proof.

For a k-face $f = v_1 v_2 \dots v_k$, we use $(d(v_1), d(v_2), \dots, d(v_k)) \to (c_1, c_2, \dots, c_k)$ to denote the vertex v_i sends f the amount of charge c_i for $i = 1, 2, \dots, k$.

- Our discharging rules are defined as follows.
- **R1.** Each 2-vertex receives 1 from each of its neighbors.

R2. Suppose $f = v_1 v_2 v_3$ is a 3-face, let $(3^-, 6^+, 6^+) \to (0, \frac{3}{2}, \frac{3}{2}),$ $(4, 5^+, 5^+) \to (\frac{2}{3}, \frac{7}{6}, \frac{7}{6}),$ $(5^+, 5^+, 5^+) \to (1, 1, 1).$ **R3.** Suppose $f = v_1 v_2 v_3 v_4$ is a 4-face, let $(3^-, 6^+, 3^-, 6^+) \to (0, 1, 0, 1),$ $(3^-, 6^+, 4, 6^+) \to (0, \frac{3}{4}, \frac{1}{2}, \frac{3}{4}),$ $(3^-, 6^+, 5, 6^+) \to (0, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}),$ $(3^-, 6^+, 6^+, 6^+) \to (0, \frac{1}{2}, 1, \frac{1}{2}),$ $(4^+, 4^+, 4^+, 4^+) \to (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}).$ **R4.** Suppose $f = v_1 v_2 v_3 v_4 v_5$ is a 5-face, let $(3^-, 6^+, 6^+, 3^-, 6^+) \to (0, \frac{1}{3}, \frac{1}{3}, 0, \frac{1}{3}),$ $(3^-, 6^+, 4^+, 4^+, 6^+) \to (0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}),$ $(4^+, 4^+, 4^+, 4^+, 4^+) \to (\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}).$

The rest of this paper is to check that $ch'(x) \ge 0$ for each $x \in V(G) \cup F(G)$.

It's obvious that $ch'(f) \ge 0$ for all $f \in F$ and $ch'(v) \ge 0$ for all 2-vertices $v \in V$ by Lemma 2 and our discharging rules. So we only need to check that $ch'(v) \ge 0$ for all 3⁺-vertices in G.

If d(v) = 3, then ch'(v) = ch(v) = 0.

If d(v) = 4, then $f_3(v) \le 3$. If $f_3(v) = 3$, then $f_4(v) = f_5(v) = 0$. Thus $ch'(v) \ge ch(v) - \frac{2}{3} \times 3 = 0$. If $f_3(v) = 2$ and the two 3-faces are adjacent, then $f_4(v) + f_5(v) \le 1$. Otherwise, if the two 3-faces are not adjacent, then $f_4(v) = 0$. Thus $ch'(v) \ge ch(v) - \max\{\frac{2}{3} \times 2 + \frac{1}{2}, \frac{2}{3} \times 2 + \frac{1}{4} \times 2\} = \frac{1}{6} > 0$. If $f_3(v) = 1$, then $f_4(v) \le 2$. Thus $ch'(v) \ge ch(v) - \frac{2}{3} - \frac{1}{2} \times 2 - \frac{1}{4} = \frac{1}{12} > 0$. If $f_3(v) = 0$, then $ch'(v) \ge ch(v) - \frac{1}{2} \times 4 = 0$.

If d(v) = 5, then $f_3(v) \le 3$. If $f_3(v) = 3$, then $f_4(v) = 0$. Thus $ch'(v) \ge ch(v) - \frac{7}{6} \times 3 - \frac{1}{4} \times 2 = 0$. If $f_3(v) = 2$, then $f_4(v) \le 2$. Thus $ch'(v) \ge ch(v) - \frac{7}{6} \times 2 - \frac{2}{3} \times 2 - \frac{1}{4} = \frac{1}{12} > 0$. If $f_3(v) \le 1$, then $ch'(v) \ge ch(v) - \frac{7}{6} - \frac{2}{3} \times 4 = \frac{1}{6} > 0$. If d(v) = 6, then $f_3(v) \le 4$. If $f_3(v) = 4$, then $f_4(v) = 0$. And by Lemma 3(1), we can get $n_3(v) \le 1$. So $ch'(v) \ge ch(v) - \frac{3}{2} \times 2 - \frac{1}{6} \times 2 - \frac{1}{3} \times 2 = 0$. If

3(1), we can get $n_3(v) \le 1$. So $ch'(v) \ge ch(v) - \frac{9}{2} \times 2 - \frac{1}{6} \times 2 - \frac{1}{3} \times 2 = 0$. If $f_3(v) = 3$, then $f_4(v) \le 1$. Thus $ch'(v) \ge ch(v) - \frac{3}{2} \times 2 - \frac{7}{6} - 1 - \frac{2}{3} = \frac{1}{6} > 0$ by Lemma 3. If $f_3(v) = 2$, then $f_4(v) \le 3$. And if the two 3-faces are adjacent, then $ch'(v) \ge ch(v) - \max\{\frac{3}{2} + \frac{7}{6} + 3 + \frac{1}{3}, \frac{3}{2} \times 2 + 1 \times 2 + \frac{1}{2} + \frac{1}{3}, \frac{3}{2} \times 2 + 1 \times 2 + \frac{1}{3} \times 2\} = 0$ by Lemmas 3(1), 4(5) and our discharging rules. Otherwise, $ch'(v) \ge ch(v) - \frac{3}{2} - \frac{7}{6} - 3 - \frac{1}{3} = 0$ by Lemma 3(1). If $f_3(v) \le 1$, then $ch'(v) \ge ch(v) - \max\{\frac{3}{2} + 4 + \frac{1}{3}, 6\} = 0$.

If d(v) = 7, this situation is very complicated. For convenience, we introduce some more notations and definitions. An *l*-fan (or simply F_l) is a configuration consisting of *l* consecutive faces around *v* and their edges incident with v, starting and ending with (2,7)-edges, and containing no other (2,7)-edge incident with *v*. An *l*-fan with consecutive faces f_1, f_2, \ldots, f_l is often said to be a $(k_1^+, k_2^+, \ldots, k_l^+)$ -fan if $d(f_1) \ge k_1, d(f_2) \ge k_2, \ldots, d(f_l) \ge k_l$. And we use $\tau(v \to x)$ to denote the sum of the charges that *v* sends to *x*.

Lemma 5. (1) $\tau(v \to F_2) \leq \frac{3}{2}$. Especially, if F_2 is a (4,4)-fan and incident with a 6⁺-neighbor of v, or if F_2 is a (4,5)-fan and v is adjacent to at least three 2-vertices, or if F_2 is a (4⁺,6⁺)-fan or a (5⁺,5⁺)-fan, then $\tau(v \to F_2) \leq 1$.

(2) $\tau(v \to F_3) \leq \frac{5}{2}$. Especially, if F_3 is a (4, 5, 4)-fan and v is adjacent to at least three 2-vertices, or if F_3 is a $(4^+, 6^+, 4^+)$ -fan, or a $(4^+, 4^+, 6^+)$ -fan, or a $(4^+, 5^+, 5^+)$ -fan, or a $(5^+, 4^+, 5^+)$ -fan, or if F_3 is a (4, 4, 4)-fan and incident with two 4^+ -neighbors of v or at least a 6^+ -neighbor of v, then $\tau(v \to F_3) \leq 2$. (3) $\tau(v \to F_4) \leq \frac{15}{4}$. Especially, if F_4 contains at most one 3-face, then

 $\tau(v \to F_4) \le \frac{7}{2}.$

(4) $\tau(v \to F_5) \leq \frac{29}{6}$. Especially, if F_5 contains exactly three 3-faces or at most one 3-face, then $\tau(v \to F_5) \leq \frac{9}{2}$.

(5) $\tau(v \to F_6) \le 6$.

Proof. (1) Suppose F_2 is a 2-fan incident with v. Then it must be a $(4^+, 4^+)$ -fan by Lemma 3(2). Let u be the 3⁺-neighbor of v that incident with F_2 . If

 F_2 is a (4,4)-fan, then $\tau(v \to F_2) \leq \frac{3}{4} \times 2 = \frac{3}{2}$ by Lemma 3(7). Otherwise, $\tau(v \to F_2) \leq 1 + \frac{1}{3} = \frac{4}{3} < \frac{3}{2}$. And especially, if F_2 is a (4, 4)-fan and $d(u) \geq 6$, then $\tau(v \to F_2) \leq \frac{1}{2} \times 2 = 1$ by our discharging rules. If F_2 is a (4, 5)-fan and vis adjacent to at least three 2-vertices, then $\tau(v \to F_2) \leq \max\{\frac{3}{4} + \frac{1}{4}, \frac{1}{2} + \frac{1}{3}\} = 1$ by Lemma 4(1). The rest of the proof is obvious by our discharging rules.

(2) Suppose F_3 is a 3-fan incident with v, and f_1, f_2, f_3 are the three consecutive faces. Let vu be the common edge between f_1 and f_2 , and vw be the common edge between f_2 and f_3 . Without loss of generality, we can assume that $d(f_1) \leq d(f_3)$. If $d(f_2) = 3$, $d(f_1) = 4$, then $d(f_3) \geq 6$. Thus $\tau(v \to F_3) \leq \max\{\frac{3}{4} + \frac{7}{6}, \frac{3}{2} + \frac{1}{2}\} \leq 2 < \frac{5}{2}$ by Lemma 3(11). If $d(f_2) = 3$, $d(f_1) = 5$, then $\tau(v \to F_3) \leq \frac{3}{2} + \frac{2}{3} < \frac{5}{2}$. Otherwise, $\tau(v \to F_3) \leq \max\{\frac{3}{2}, \frac{3}{4} \times 2 + 1, 2 + \frac{1}{3}\} = \frac{5}{2}$ by Lemma 3(8). Especially, if F_3 is a (4, 5, 4)-fan and v is adjacent to at least three 2-vertices, then $\tau(v \to F_3) \leq \max\{1 + \frac{3}{4} + \frac{1}{4}, 1 + \frac{2}{3} + \frac{1}{3}, \frac{3}{4} \times 2 + \frac{1}{3}\} \leq 2$ by Lemma 4(2). If F_3 is a (4, 4, 4)-fan and incident with two 4⁺-neighbors of v or at least a 6⁺-neighbor of v, then $\tau(v \to F_3) \leq \max\{\frac{3}{4} \times 2 + \frac{1}{2}, \frac{1}{2} \times 2 + 1\} = 2$ by our discharging rules. The rest of the proof is obvious, we omit here.

(3) Suppose F_4 is a 4-fan incident with v. Then F_4 contains at most two 3-faces. If F_4 contains exactly two 3-faces, then it contains at most one 4-face. Thus $\tau(v \to F_4) \leq \max\{\frac{3}{4} + \frac{7}{6} + \frac{3}{2} + \frac{1}{3}, \frac{3}{2} \times 2 + \frac{2}{3}\} = \frac{15}{4}$ by Lemmas 3(5), 3(11) and our discharging rules. Otherwise, $\tau(v \to F_4) \leq \max\{2 + \frac{3}{2}, \frac{3}{2} + 1 + \frac{2}{3}, \frac{3}{4} \times 2 + 2, 3 + \frac{1}{3}\} = \frac{7}{2}$ by Lemma 3(9).

(4) Suppose F_5 is a 5-fan incident with v. Then F_5 contains at most three 3-faces. If F_5 contains exactly three 3-faces, then it contains no 4-face and 5-face. Thus $\tau(v \to F_5) \leq \max\{1 + \frac{3}{2} \times 2, \frac{3}{2} + \frac{7}{6} \times 2\} = 4$ by Lemma 3(5). If F_5 contains exactly two 3-faces, then it contains at most two 4-faces. Thus $\tau(v \to F_5) \leq \max\{\frac{7}{6} + \frac{3}{2} + \frac{3}{4} + 1 + \frac{1}{3}, \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + \frac{1}{3}, \frac{3}{2} \times 2 + 1 + \frac{1}{3} \times 2\} = \frac{29}{6}$ by Lemmas 3(5), 3(11) and 3(12). Otherwise, $\tau(v \to F_5) \leq \max\{\frac{3}{2} + 3, \frac{3}{2} + 2 + \frac{2}{3}, 4 + \frac{1}{3}, \frac{3}{4} \times 2 + 3\} = \frac{9}{2}$ by Lemma 3(10).

(5) Suppose F_6 is a 6-fan incident with v. Then F_6 contains at most three 3-faces. If F_6 is a $(4^+, 3, 3, 3, 4^+, 4^+)$ -fan, then $\tau(v \to F_6) \leq \max\{\frac{7}{6} \times 3 + \frac{3}{4} \times 2 + 1, 1 + \frac{7}{6} + \frac{3}{2} + \frac{3}{4} \times 3, \frac{7}{6} \times 2 + \frac{3}{2} + \frac{3}{4} \times 2 + \frac{3}{2}, \frac{7}{6} \times 2 + \frac{3}{2} + \frac{3}{4} + 1 + \frac{1}{3}, \frac{7}{6} + \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + \frac{1}{3}, \frac{7}{6} + \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + \frac{1}{3}, \frac{7}{6} + \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + \frac{3}{4}, \frac{7}{6} + \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + \frac{1}{3}, \frac{7}{6} + \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + \frac{1}{3}, \frac{7}{6} + \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + \frac{1}{3}, \frac{3}{2} \times 2 + \frac{7}{6} + \frac{3}{4} + \frac{2}{3}, \frac{3}{2} \times 3 + \frac{1}{3} + 1, \frac{7}{6} + \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + \frac{3}{4} \times 2 + \frac{3}{6} \leq 6$. If F_6 contains exactly two 3-faces, then F_6 contains at most three 4-faces. Thus $\tau(v \to F_6) \leq \max\{\frac{3}{2} \times 2 + 2 \times 1 + \frac{1}{3} \times 2, \frac{3}{2} \times 2 + 3 \times 1, \frac{7}{6} + \frac{3}{2} + \frac{3}{4} + 2 + \frac{1}{3}, \frac{3}{2} \times 2 + \frac{3}{4} \times 2 + 1 + \frac{1}{3}\} = 6$ by Lemmas 3(5), (11), (12), (13). Otherwise, $\tau(v \to F_6) \leq \max\{\frac{3}{2} + 4 \times 1 + \frac{1}{3}, 6 \times 1\} = 6$.

Now we come back to check the new charge of 7-vertex v and consider eight cases in the following.

Case 1. $n_2(v) = 7$. Then $f_{6^+}(v) = 7$ by Lemmas 2 and 3(6). So $ch'(v) \ge ch(v) - 7 = 1$.

Case 2. $n_2(v) = 6$. Then $f_3(v) = 0$ and $f_{6^+}(v) \ge 5$ by Lemmas 3(2) and 3(6). Thus $ch'(v) \ge ch(v) - 6 - 2 = 0$.

Case 3. $n_2(v) = 5$. Then there are three possibilities in which 2-vertices are located. Various situations can see Fig. 3.

FIGURE 3. $n_2(v) = 5$

For Fig. 3(1), $f_{6^+}(v) \ge 4$. So $ch'(v) \ge ch(v) - 5 - \frac{5}{2} = \frac{1}{2} > 0$ by Lemma 5(2). For Fig. 3(2) and 3(3), $f_{6^+}(v) \ge 3$. So $ch'(v) \ge ch(v) - 5 - \frac{3}{2} \times 2 = 0$ by Lemma 5(1).

Case 4. $n_2(v) = 4$. Then there are four possibilities in which 2-vertices are located. Various situations can see Fig. 4.

FIGURE 4. $n_2(v) = 4$

For Fig. 4(1), $f_{6^+}(v) \ge 3$. So $ch'(v) \ge ch(v) - 4 - \frac{15}{4} = \frac{1}{4} > 0$ by Lemma 5(3). For Fig. 4(2) and 4(3), $f_{6^+}(v) \ge 2$ and v is incident with a 2-fan and a 3-fan. So $ch'(v) \ge ch(v) - 4 - \frac{3}{2} - \frac{5}{2} = 0$ by Lemmas 5(1) and 5(2). For Fig. 4(4), $f_{6^+}(v) \ge 1$ and v is incident with three 2-fans. If they are all (4, 4)-fan, then v is adjacent to a 6⁺-vertex by Lemma 3(15). So $ch'(v) \ge ch(v) - 4 - \frac{3}{2} \times 2 - 1 = 0$ by Lemma 5(1).

Case 5. $n_2(v) = 3$. Then there are four possibilities in which 2-vertices are located. Various situations can see Fig. 5.

For Fig. 5(1), $f_{6^+}(v) \ge 2$. Then $ch'(v) \ge ch(v) - 3 - \frac{29}{6} = \frac{1}{6} > 0$ by Lemma 5(4). For Fig. 5(2), v is incident with a 2-fan and a 4-fan. If F_4 contains at most one 3-face, then $ch'(v) \ge ch(v) - 3 - \frac{3}{2} - \frac{7}{2} = 0$ by Lemmas 5(1) and 5(3). If F_4 contains two 3-faces and F_2 is a $(4^+, 5^+)$ -fan, then $ch'(v) \ge ch(v) - 3 - 1 - \frac{15}{4} = \frac{1}{4} > 0$ by Lemma 5. Otherwise, if F_2 is a (4, 4)-fan, then F_4 must be a

FIGURE 5. $n_2(v) = 3$

 $(4^+, 3, 3, 6^+)$ -fan. So $ch'(v) \ge ch(v) - 3 - \frac{3}{2} - \max\{\frac{3}{4} + \frac{7}{6} + \frac{3}{2}, \frac{3}{2} \times 2 + \frac{1}{3}\} = \frac{1}{12} > 0$ by Lemmas 3(5) and 3(11). For Fig. 5(3), v is incident with two 3-fans. Thus $ch'(v) \ge ch(v) - 3 - \frac{5}{2} \times 2 = 0$ by Lemma 5(2). For Fig. 5(4), v is incident with a 3-fan and two 2-fans. Suppose F_3 contains one 3-face. If v is incident with two (4, 4)-fan, then F_3 must be a $(6^+, 3, 6^+)$ -fan. So $ch'(v) \ge ch(v) - 3 - \frac{3}{2} \times 2 - \frac{3}{2} = \frac{1}{2} > 0$ by Lemma 5(1). Otherwise, if v is incident with at least a $(4^+, 5^+)$ -fan, then $ch'(v) \ge ch(v) - 3 - \frac{3}{2} - 1 - \frac{5}{2} = 0$. Suppose F_3 contains no 3-face. If v is incident with two (4, 4)-fan, then F_3 must be a $(4, 4^+, 4)$ -fan, or a $(4, 4^+, 6^+)$ -fan, or a $(6^+, 4^+, 6^+)$ -fan. Thus $ch'(v) \ge ch(v) - 3 - \max\{\frac{3}{2} \times 2 + 2, \frac{3}{2} + 1 + \frac{5}{2}\} = 0$ by Lemmas 3(8), 3(16) and Lemma 5. Otherwise, v is incident with at least a $(4^+, 5^+)$ -fan, then $ch'(v) \ge ch(v) - 3 - \frac{3}{2} - 1 - \frac{5}{2} = 0$.

Case 6. $n_2(v) = 2$. Then there are three possibilities in which 2-vertices are located. Various situations can see Fig. 6.

FIGURE 6. $n_2(v) = 2$

For Fig. 6(1), if $d(f_1) = 5$, then $d(f_2) \ge 6$ and $d(f_7) \ge 6$. Thus $ch'(v) \ge ch(v) - 2 - \frac{3}{2} \times 3 - 1 - \frac{1}{3} = \frac{1}{6} > 0$. Otherwise, $ch'(v) \ge ch(v) - 2 - 6 = 0$ by Lemma 5(5). For Fig. 6(2), v is incident with a 2-fan and a 5-fan. If F_5 contains three 3-faces or at most one 3-face, then $ch'(v) \ge ch(v) - 2 - \frac{3}{2} - \frac{9}{2} = 0$ by Lemma 5. Suppose F_5 contains exactly two 3-faces. If F_2 is a $(4^+, 6^+)$ -fan or a $(5^+, 5^+)$ -fan, then $ch'(v) \ge ch(v) - 2 - 1 - \frac{29}{6} = \frac{1}{6} > 0$ by Lemma 5. Otherwise, if F_2 is a (4, 4)-fan or a (4, 5)-fan, then $ch'(v) \ge ch(v) - 2 - \frac{3}{2} - \frac{9}{2} = 0$ max $\{\frac{3}{2} \times 2 + 1 + \frac{1}{3}, \frac{3}{4} + 1 + \frac{7}{6} + \frac{3}{2}, \frac{3}{4} \times 2 + \frac{3}{2} \times 2\} = 0$ by Lemmas 3(5) and 3(12). For Fig. 6(3), v is incident with a 3-fan and a 4-fan. If F_4 contains at most one 3-face, then $ch'(v) \ge ch(v) - 2 - \frac{7}{2} - \frac{5}{2} = 0$ by Lemma 5. Otherwise,

 $ch'(v) \ge ch(v) - 2 - \max\{\frac{3}{2} \times 2 + \frac{1}{3} \times 2 + \frac{3}{2}, \frac{3}{2} \times 2 + \frac{1}{3} + \frac{5}{2}, \frac{3}{2} + \frac{7}{6} + \frac{3}{4} + \frac{1}{3} + \frac{3}{2}, \frac{3}{2} + \frac{7}{6} + \frac{3}{4} + \frac{5}{2}\} = \frac{1}{12} > 0$ by Lemmas 3(5) and 3(11) and our discharging rules. **Case 7.** $n_2(v) = 1$. Note that $f_3(v) \le 5$. Let u be the unique 2-vertex adjacent to v. We split the proof into six cases.

Subcase 7.1. $f_3(v) = 5$. Then $f_4(v) = f_5(v) = 0$. So $ch'(v) \ge ch(v) - 1 - \frac{3}{2} - \frac{7}{6} \times 4 = \frac{5}{6} > 0$ by Lemmas 3(3) and 3(4).

Subcase 7.2. $f_3(v) = 4$. Various situations are illustrated in Fig. 7.

FIGURE 7

If uv is incident with a 3-face, then the other three 3-faces are not incident with 3-vertices by Lemmas 3(3) and 3(4). For Fig. 7(1), $f_{6^+}(v) \ge 1$, thus $ch'(v) \ge ch(v) - 1 - \frac{3}{2} - \frac{7}{6} \times 3 - 2 = 0$. For Fig. 7(2) and 7(3), $f_4(v) \le 1$, thus $ch'(v) \ge ch(v) - 1 - \frac{3}{2} - \frac{7}{6} \times 3 - 1 - \frac{2}{3} = \frac{1}{3} > 0$. Now suppose uv is not incident with a 3-face. For Fig. 7(1), $f_{6^+}(v) \ge 2$, thus $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 4 - 1 = 0$. For Fig. 7(2), $f_4(v) \le 1$, thus $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 4 - 1 = 0$. For Fig. 7(2), $f_4(v) \le 1$, thus $ch'(v) \ge ch(v) - 1 - \max\{\frac{3}{2} \times 4 + \frac{1}{3} \times 3, \frac{3}{2} \times 3 + \frac{7}{6} + 1 + \frac{1}{3}\} = 0$ by Lemma 4(3).

Subcase 7.3. $f_3(v) = 3$. Various situations are illustrated in Fig. 8.

FIGURE 8

Suppose uv is incident with a 3-face. For Fig. 8(1), $f_{6+}(v) \ge 2$, thus $ch'(v) \ge ch(v) - 1 - \frac{3}{2} - \frac{7}{6} \times 2 - 2 = \frac{7}{6} > 0$. For Fig. 8(2)-8(4), $f_4(v) \le 3$, thus $ch'(v) \ge ch(v) - 1 - \frac{3}{2} - \frac{7}{6} \times 2 - \max\{3, 2 + \frac{2}{3}\} = \frac{1}{6} > 0$. Suppose uv is not incident with a 3-face. For Fig. 8(1), $f_{6+}(v) \ge 2$, thus $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - 2 = \frac{1}{2} > 0$. For Fig. 8(2) and 8(3), $f_4(v) \le 2$, thus $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - \max\{2 + \frac{1}{3}, 1 + \frac{1}{3} \times 3\} = \frac{1}{6} > 0$. For Fig. 8(4), $f_4(v) \le 1$, thus $ch'(v) \ge ch(v) - 1 - \frac{3}{2} \times 3 - 1 - \frac{1}{3} \times 3 - 1 = \frac{1}{2} > 0$.

Subcase 7.4. $f_3(v) = 2$. Various situations are illustrated in Fig. 9.

FIGURE 9

It's obvious that $f_4(v) \leq 4$. Suppose uv is incident with a 3-face. Then $ch'(v) \geq ch(v) - 1 - \frac{3}{2} - \frac{7}{6} - 4 - \frac{1}{3} = 0$ by Lemmas 3(3) and 3(4). Suppose uv is not incident with a 3-face. If $f_4(v) \leq 3$, then $ch'(v) \geq ch(v) - 1 - \frac{3}{2} \times 2 - 3 - \frac{1}{3} \times 2 = \frac{1}{3} > 0$. Now we consider the case that $f_4(v) = 4$. For Fig. 9(1), $ch'(v) \geq ch(v) - 1 - \max\{\frac{3}{2} \times 2 + \frac{3}{4} \times 2 + 2 + \frac{1}{3}, \frac{3}{2} + \frac{7}{6} + 4 + \frac{1}{3}\} = 0$ by Lemmas 3(5), 3(14) and Lemma 4(4). For Fig. 9(2) and 9(3), $f_{6+}(v) \geq 1$. So $ch'(v) \geq ch(v) - 1 - \frac{3}{2} \times 2 - 4 = 0$.

Subcase 7.5. $f_3(v) = 1$. In this case, $f_4(v) \le 5$. So $ch'(v) \ge ch(v) - 1 - \frac{3}{2} - 5 - \frac{1}{3} = \frac{1}{6} > 0$.

Subcase 7.6. $f_3(v) = 0$. It's obvious that $ch'(v) \ge ch(v) - 1 - 7 = 0$.

Case 8. $n_2(v) = 0$. In this case, $f_3(v) \le 5$. If $f_3(v) = 5$, then $f_{6+}(v) = 2$. Thus $ch'(v) \ge ch(v) - \frac{3}{2} \times 5 = \frac{1}{2} > 0$. If $f_3(v) = 4$, then $f_4(v) \le 1$. Thus $ch'(v) \ge ch(v) - \frac{3}{2} \times 4 - 1 - \frac{2}{3} = \frac{1}{3} > 0$. If $1 \le f_3(v) \le 3$, then $f_{5+}(v) \ge 1$. Thus $ch'(v) \ge ch(v) - \frac{3}{2} \times f_3(v) - (6 - f_3(v)) \times 1 - \frac{1}{3} = \frac{5}{3} - \frac{1}{2} \times f_3(v) > 0$. If $f_3(v) = 0$, then $ch'(v) \ge ch(v) - 7 = 1 > 0$.

Hence we complete the proof of Theorem 1.

Acknowledgement. I would like to thank the referees for their valuable suggestions.

References

- M. Behzad, Graphs and their chromatic numbers, Ph.D. thesis, Michigan State University, 1965.
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
- [3] O. V. Borodin, A. V. Kostochka, and D. R. Woodall, Total colorings of planar graphs with large maximum degree, J. Graph Theory 26 (1997), no. 1, 53–59.
- [4] _____, Total colorings of planar graphs with large girth, Europ. J. Combinatorics 19 (1998), 19–24.
- [5] J. S. Cai, Total coloring of a planar graph without 7-cycles with chords, Acta Math. Appl. Sin. 37 (2014), no. 2, 286–296.
- [6] G. J. Chang, J. F. Hou, and N. Roussel, Local condition for planar graphs of maximum degree 7 to be 8-totally-colorable, Discrete Appl. Math. 159 (2011), no. 8, 760–768.
- [7] J. Chang, H. J. Wang, and J. L. Wu, Total colorings of planar graphs with maximum degree 8 and without 5-cycles with two chords, Theoret. Comput. Sci. 476 (2013), 16–23.

- [8] D. Z. Du, L. Shen, and Y. Q. Wang, Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally colorable, Discrete Appl. Math. 157 (2009), no. 13, 2778– 2784.
- [9] J. F. Hou, B. Liu, G. Z. Liu, and J. L. Wu, *Total colorings of planar graphs without* 6-cycles, Discrete Appl. Math. **159** (2011), no. 2-3, 157–163.
- [10] A. V. Kostochka, The total chromatic number of any multigraph with maximum degree five is at most seven, Discrete Math. 162 (1996), no. 1-3, 199–214.
- [11] L. Kowalik, J. S. Sereni, and R. Škrekovski, Total-Coloring of plane graphs with maximum degree nine, SIAM J. Discrete Math. 22 (2008), no. 4, 1462–1479.
- [12] D. P. Sanders and Y. Zhao, On total 9-coloring planar graphs of maximum degree seven, J. Graph Theory 31 (1999), no. 1, 67–73.
- [13] L. Shen and Y. Q. Wang, On the 7-total colorability of planar graphs with maximum degree 6 and without 4-cycles, Graphs Combin. 25 (2009), no. 3, 401–407.
- [14] J. J. Tian, J. L. Wu, and H. J. Wang, Total colorings of planar graphs without adjacent chordal 5-cycles, Util. Math. 91 (2013), 13–23.
- [15] V. G. Vizing, Some unresolved problems in graph theory, Uspekhi Mat. Nauk 23 (1968), 117–134.
- [16] B. Wang and J. L. Wu, Total colorings of planar graphs without intersecting 5-cycles, Discrete Appl. Math. 160 (2012), no. 12, 1815–1821.
- [17] B. Wang, J. L. Wu, and H. J. Wang, Total colorings of planar graphs with maximum degree seven and without intersecting 3-cycles, Discrete Math. 311 (2011), no. 18-19, 2025–2030.
- [18] H. J. Wang, B. Liu, and J. L. Wu, Total colorings of planar graphs without adjacent 4-cycles, Discrete Math. 312 (2012), no. 11, 1923–1926.
- [19] H. J. Wang, L. D. Wu, and J. L. Wu, Total coloring of planar graphs with maximum degree 8, Theoret. Comput. Sci. 522 (2014), 54–61.
- [20] H. J. Wang, L. D. Wu, W. L. Wu, P. M. Pardalos, and J. L. Wu, Minimum total coloring of planar graph, J. Global Optim. 60 (2014), no. 4, 777–791.
- [21] P. Wang and J. Wu, A note on total colorings of planar graphs without 4-cycles, Discuss. Math. Graph Theory 24 (2004), no. 1, 125–135.
- [22] W. Wang, Total chromatic number of planar graphs with maximum degree ten, J. Graph Theory 54 (2007), no. 2, 91–102.
- [23] Y. Q. Wang, Q. Sun, X. Tao, and L. Shen, Plane graphs with maximum degree 7 and without 5-cycles with chords are 8-totally-colorable, Sci. China Math. 41 (2011), no. 1, 95–104.
- [24] H. P. Yap, Total colourings of graphs, Lecture Notes in Mathematics, Springer, 1623, 1996.

School of Mathematics and Quantitative Economics Shandong University of Finance and Economics Jinan, 250014, P. R. China *E-mail address:* xtandw@126.com