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TOTAL COLORINGS OF PLANAR GRAPHS WITH

MAXIMUM DEGREE AT LEAST 7 AND WITHOUT

ADJACENT 5-CYCLES

Xiang Tan

Abstract. A k-total-coloring of a graph G is a coloring of V ∪ E using
k colors such that no two adjacent or incident elements receive the same
color. The total chromatic number χ′′(G) of G is the smallest integer
k such that G has a k-total-coloring. Let G be a planar graph with
maximum degree ∆. In this paper, it’s proved that if ∆ ≥ 7 and G does
not contain adjacent 5-cycles, then the total chromatic number χ′′(G) is
∆ + 1.

1. Introduction

All graphs considered in this paper are finite, simple and undirected. And
we follow [2] for the terminologies and notations not defined here. Let G be
a planar graph which has been embedded in the plane. We use V (G), E(G),
F (G), ∆(G) and δ(G) (or simply V , E, F , ∆ and δ) to denote the vertex
set, the edge set, the face set, the maximum degree and the minimum degree
of G, respectively. A k-cycle is a cycle of length k, two cycles are said to be
intersecting if they are incident with a common vertex, and adjacent if they
share at least one edge.

A k-total-coloring of a graph G is a coloring of V ∪ E using k colors such
that no two adjacent or incident elements receive the same color. A graph is
totally k-colorable if it admits a k-total-coloring. The total chromatic number

χ′′(G) of G is the smallest integer k such that G is totally k-colorable. It’s
clear that χ′′(G) ≥ ∆+1. Behzad [1] and Vizing [15] independently posed the
famous conjecture, which is known as the Total Coloring Conjecture (TCC).

Conjecture A. For any graph G, ∆+ 1 ≤ χ′′(G) ≤ ∆+ 2.
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This conjecture was confirmed for ∆ ≤ 5 (see [24]). For planar graphs, the
only open case is ∆ = 6 (see [10, 12]). Moreover, if G is a planar graph with
maximum degree ∆ ≥ 9, then χ′′(G) = ∆ + 1 (see [3, 11, 22]). However, for
4 ≤ ∆ ≤ 8, it’s unknown if every planar graph with maximum degree ∆ is
totally (∆ + 1)-colorable. The study of this has been attracted considerable
attention. Some related results can be found in [4-9, 13, 14, 16-23]. Wang,
Sun, et al. [23] proved that planar graphs with ∆ ≥ 7 and without 5-cycles
with chords are totally (∆ + 1)-colorable. Wang and Wu [16] proved that
if G is a planar graph with ∆ ≥ 7 and without intersecting 5-cycles, then
χ′′(G) = ∆+ 1. In this paper, we get the following theorem.

Theorem 1. If G is a planar graph with ∆ ≥ 7 and without adjacent 5-cycles,

then χ′′(G) = ∆ + 1.

For convenience, we introduce some more notations and definitions. Let
G = (V,E, F ) be a planar graph. A k-, k+- or k−-vertex is a vertex of degree
k, at least k or at most k, respectively. The degree of f , denoted by d(f), is
the number of edges incident with it, where each cut edge counts twice. The
notations of k-, k+- or k−-face are defined analogously as for the vertices. A
k-face with consecutive vertices v1, v2, . . . , vk along its boundary is often said
to be a (d(v1), d(v2), . . . , d(vk))-face. For v ∈ V (G), we use N(v) to denote the
set of vertices which are adjacent to v, ni(v) to denote the number of i-vertices
adjacent to v, fi(v) to denote the number of i-faces incident with v.

2. Reducible configurations

In [19], Theorem 1 was proved for ∆ ≥ 8. So it suffices to consider the case
that ∆ = 7. Let G = (V,E, F ) be a minimal counterexample to Theorem 1
in terms of vertices and edges. Then every proper subgraph of G is totally
8-colorable. Let L = {1, 2, . . . , 8} be the color set for simplicity. We first give
some lemmas for G.

Lemma 2 ([3, 6, 13]). The graph G has the following properties:

(a) G is 2-connected. Hence δ(G) ≥ 2 and the boundary of each face is

exactly a cycle.

(b) Let uv ∈ E(G). If d(u) ≤ 3, then dG(u) + dG(v) ≥ ∆+ 2 = 9. Hence

the two neighbors of a 2-vertex are 7-vertices; and the three neighbors

of a 3-vertex are 6+-vertices.
(c) G contains no even cycle (v1, v2, . . . , v2t) such that d(v1) = d(v3) =

· · · = d(v2t−1) = 2.
(d) G has no (4, 4, 7−)-face.
(e) If v is a 7-vertex of G with n2(v) ≥ 1, then n4+(v) ≥ 1.

Note that in all figures of the paper, the vertices marked by • have no other
neighbors in G other than those shown.
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Figure 1. Reducible configurations

Lemma 3. G contains no subgraph isomorphic to the configurations depicted

in Fig. 1.

The proof that G contains no configurations depicted in Fig. 1(1)-(16) can
be found in [3, 5, 8, 11, 16, 23].

Let ϕ be a (partial) 8-total-coloring of G. For each element x ∈ V ∪ E, we
denote by C(x) the set of colors of vertices and edges incident or adjacent to
x. If v ∈ V , we set S(v) := {ϕ(uv), u ∈ N(v)} and S(v) := S(v)∪ϕ(v). Call ϕ
is nice if only some 3−-vertices are not colored. Note that every nice coloring
can be greedily extended to a 8-total-coloring of G, since each 3−-vertex has at
most 6 forbidden colors. Therefore, in the rest of this paper, we shall always
suppose that such vertices are colored at the very end.

Lemma 4. G has no subgraph isomorphic to the configurations depicted in

Fig. 2.

Proof. (1) On the contrary, suppose G contains a configuration as depicted in
Fig. 2(1). By the minimality of G, G′ = G− vv1 has a proper 8-total-coloring
ϕ. Without loss of generality, suppose that ϕ(vvi) = i (i = 2, 3, . . . , 7) and
ϕ(v) = 8. If ϕ(v1x) 6= 1, we can color vv1 with 1 to obtain a nice coloring of G,
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Figure 2. Reducible configurations

a contradiction. Thus ϕ(v1x) = 1. Moreover, we infer that ϕ(v3z) = 1. Since
otherwise, we can recolor vv3 with 1, and color vv1 with 3, a contradiction.
Similarly, ϕ(v4w) = ϕ(v2y) = 1. First we recolor the edges v2y and v3z with
ϕ(yz) and yz with 1. In the following, we split the proof into three cases.

Case 1. ϕ(yz) = 2. Then we can recolor vv2 with 1, and color vv1 with 2.

Case 2. ϕ(yz) = 3. If ϕ(v2x) 6= 3, then we can recolor vv3 with 1, and
color vv1 with 3. Otherwise, we can interchange the colors of v1x and v2x, and
recolor vv3 with 1, vv4 with 3, and color vv1 with 4.

Case 3. ϕ(yz) /∈ {2, 3}. Then we interchange the colors of v1x and v2x, and
color vv1 with 1, a contradiction.

(2) Suppose G contains a configuration as depicted in Fig. 2(2). Then G′ =
G−vv1 has a proper 8-total-coloring ϕ. Without loss of generality, suppose that
ϕ(vvi) = i (i = 2, 3, . . . , 7) and ϕ(v) = 8. Obviously, ϕ(v1x1) = 1. If 1 /∈ S(v2),
we can recolor vv2 with 1, and color vv1 with 2 to obtain a nice coloring of G, a
contradiction. Thus ϕ(v2x2) = 1. Similarly, ϕ(v3x3) = ϕ(v4x4) = ϕ(v5x5) = 1.
First we recolor v2x2 and v3x3 with ϕ(x2x3) and x2x3 with 1. In the following,
we split the proof into three cases.

Case 1. ϕ(x2x3) = 2. If ϕ(x3x4) 6= 2, we can recolor vv2 with 1, and color vv1
with 2. Otherwise, then interchange the colors of v3x4 and v4x4, and recolor
vv2 with 1, color vv1 with 2.

Case 2. ϕ(x2x3) = 3. If ϕ(v2x1) 6= 3, then recolor vv3 with 1, and color vv1
with 3. Otherwise, then interchange the colors of v2x1 and v1x1, and recolor
vv3 with 1, vv4 with 3, color vv1 with 4.

Case 3. ϕ(x2x3) /∈ {2, 3}. Then interchange the colors of v2x1 and v1x1, and
also of v3x4 and v4x4. If ϕ(v3x4) 6= 4, then color vv1 with 1. If ϕ(v3x4) = 4,
ϕ(v2x1) 6= 4, then recolor vv4 with 1, and color vv1 with 4. If ϕ(v3x4) =
ϕ(v2x1) = 4, then recolor vv4 with 1, vv5 with 4, and color vv1 with 5.

(3) suppose G contains a configuration as depicted in Fig. 2(3). Consider
a nice coloring ϕ of G′ = G − vv1. Without loss of generality, suppose that
ϕ(vvi) = i (i = 2, 3, . . . , 7) and ϕ(v) = 8. Obviously, ϕ(v1x1) = 1. If 1 /∈ S(v2),
then recolor vv2 with 1, and color vv1 with 2. Thus we can get a nice coloring
of G, a contradiction. Hence ϕ(v2v3) = 1. Similarly, ϕ(v4x2) = 1. Now we
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interchange the colors of vv3 and v2v3. If ϕ(v2x1) 6= 3, then color vv1 with 3.
Otherwise, then interchange the colors of v2x1 and v1x1, and recolor vv4 with
3, color vv1 with 4.

(4) The proof is similar to the previous case, we omit here.
(5) suppose G contains a configuration as depicted in Fig. 2(5). Consider

a nice coloring ϕ of G′ = G − vv1. Without loss of generality, suppose that
ϕ(vvi) = i + 1 (i = 2, 3, . . . , 6), ϕ(v) = 8, and ϕ(v6v1) = 1, ϕ(v1v2) = 2. We
split the proof into two cases.

Case 1. ϕ(v2x) 6= 4.
Suppose 2 /∈ S(x). First we interchange the colors of v2x and v2v1. If

ϕ(v2x) 6= 1, then color vv1 with 2. Otherwise, then interchange the colors of
v1v6 and vv6, and color vv1 with 2.

Suppose 2 ∈ S(x), 3 /∈ S(x). First recolor v2x with 3, v1v2 with ϕ(v2x),
and recolor vv2 with 2. If ϕ(v2x) 6= 1, then color vv1 with 3. Otherwise, then
interchange the colors of v1v6 and vv6, and color vv1 with 3.

Suppose 2 ∈ S(x), 3 ∈ S(x). Without loss of generality, let ϕ(v3x) =
2, ϕ(xx1) = 3. We can interchange the colors of vv3 and v3x, and color vv1
with 4.

Case 2. ϕ(v2x) = 4.
If 2 /∈ S(x), then we interchange the colors of v2x and v2v1, and color vv1

with 2. If 2 ∈ S(x), 3 /∈ S(x), then we recolor v2x with 3, v1v2 with 4, vv2
with 2, and color vv1 with 3.

If 2 ∈ S(x), 3 ∈ S(x), then without loss of generality, let ϕ(v3x) = 2,
ϕ(xx1) = 3.

Subcase 2.1. 2 /∈ S(y).
First interchange the colors of v3x and v3y. If ϕ(v3y) = 3, then recolor vv3

with 3, v3x with 4, v2x with 2, vv2 with 4, v1v2 with 3, and color vv1 with 2.
Otherwise, then interchange the colors of v1v2 and v2x, and color vv1 with 2.

Subcase 2.2. 2 ∈ S(y). Then ϕ(v4y) = 2 or ϕ(yy1) = 2.

Subcase 2.2.1. ϕ(v4y) = 2.
Suppose ϕ(v3y) 6= 3. First interchange the colors of v3y and v3x. If ϕ(yy1) =

4, then interchange the colors of v4y and vv4, and color vv1 with 5. Otherwise,
then recolor v3y with 4, vv3 with 2, and color vv1 with 4.

Suppose ϕ(v3y) = 3, ϕ(yy1) = 4. Then interchange the colors of vv4 and
v4y, and color vv1 with 5.

Suppose ϕ(v3y) = 3, ϕ(yy1) 6= 4. Then interchange the colors of vv3 and
v3y, and also of vv2 and v1v2, and color vv1 with 4.

Subcase 2.2.2. ϕ(yy1) = 2.
Suppose ϕ(v3y) 6= 3. First we recolor v3x with ϕ(v3y), v3y with 4, and vv3

with 2. If ϕ(v4y) = 4, then interchange the colors of v4y and vv4, and color
vv1 with 5. Otherwise, we color vv1 with 4.
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Suppose ϕ(v3y) = 3, ϕ(v4y) = 4. Then we interchange the colors of vv4 and
v4y, and also of vv3 and v3y, and vv2 and v1v2. Finally, we color vv1 with 5.

Suppose ϕ(v3y) = 3, ϕ(v4y) 6= 4. Then we interchange the colors of vv3 and
v3y, and also of vv2 and v1v2. Finally, we color vv1 with 4. Thus we can obtain
a nice coloring of G, a contradiction. �

3. Discharging

By Euler’s formula |V | − |E|+ |F | = 2, we have

(1)
∑

v∈V

(2d(v)− 6) +
∑

f∈F

(d(f)− 6) = −12 < 0.

We define ch to be the initial charge. Let ch(v) = 2d(v)−6 for each v ∈ V (G)
and ch(f) = d(f) − 6 for each f ∈ F (G). In the following, we will reassign
a new charge denoted by ch′(x) to each x ∈ V (G) ∪ F (G) according to the
discharging rules. Since our rules only move charges around, and do not affect
the sum, we have

(2)
∑

x∈V (G)∪F (G)

ch′(x) =
∑

x∈V (G)∪F (G)

ch(x) = −12.

In the following, we will show that ch′(x) ≥ 0 for each x ∈ V (G) ∪ F (G), a
contradiction to (2), which completes the proof.

For a k-face f = v1v2 . . . vk, we use (d(v1), d(v2), . . . , d(vk)) → (c1, c2, . . . , ck)
to denote the vertex vi sends f the amount of charge ci for i = 1, 2, . . . , k.

Our discharging rules are defined as follows.
R1. Each 2-vertex receives 1 from each of its neighbors.
R2. Suppose f = v1v2v3 is a 3-face, let

(3−, 6+, 6+) → (0, 3
2 ,

3
2 ),

(4, 5+, 5+) → (23 ,
7
6 ,

7
6 ),

(5+, 5+, 5+) → (1, 1, 1).
R3. Suppose f = v1v2v3v4 is a 4-face, let

(3−, 6+, 3−, 6+) → (0, 1, 0, 1),
(3−, 6+, 4, 6+) → (0, 3

4 ,
1
2 ,

3
4 ),

(3−, 6+, 5, 6+) → (0, 2
3 ,

2
3 ,

2
3 ),

(3−, 6+, 6+, 6+) → (0, 1
2 , 1,

1
2 ),

(4+, 4+, 4+, 4+) → (12 ,
1
2 ,

1
2 ,

1
2 ).

R4. Suppose f = v1v2v3v4v5 is a 5-face, let
(3−, 6+, 6+, 3−, 6+) → (0, 1

3 ,
1
3 , 0,

1
3 ),

(3−, 6+, 4+, 4+, 6+) → (0, 1
4 ,

1
4 ,

1
4 ,

1
4 ),

(4+, 4+, 4+, 4+, 4+) → (15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ).

The rest of this paper is to check that ch′(x) ≥ 0 for each x ∈ V (G)∪F (G).
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It’s obvious that ch′(f) ≥ 0 for all f ∈ F and ch′(v) ≥ 0 for all 2-vertices
v ∈ V by Lemma 2 and our discharging rules. So we only need to check that
ch′(v) ≥ 0 for all 3+-vertices in G.

If d(v) = 3, then ch′(v) = ch(v) = 0.
If d(v) = 4, then f3(v) ≤ 3. If f3(v) = 3, then f4(v) = f5(v) = 0. Thus

ch′(v) ≥ ch(v) − 2
3 × 3 = 0. If f3(v) = 2 and the two 3-faces are adjacent,

then f4(v) + f5(v) ≤ 1. Otherwise, if the two 3-faces are not adjacent, then
f4(v) = 0. Thus ch′(v) ≥ ch(v) −max{ 2

3 × 2 + 1
2 ,

2
3 × 2 + 1

4 × 2} = 1
6 > 0. If

f3(v) = 1, then f4(v) ≤ 2. Thus ch′(v) ≥ ch(v) − 2
3 − 1

2 × 2 − 1
4 = 1

12 > 0. If

f3(v) = 0, then ch′(v) ≥ ch(v)− 1
2 × 4 = 0.

If d(v) = 5, then f3(v) ≤ 3. If f3(v) = 3, then f4(v) = 0. Thus ch′(v) ≥
ch(v)− 7

6 × 3− 1
4 × 2 = 0. If f3(v) = 2, then f4(v) ≤ 2. Thus ch′(v) ≥ ch(v)−

7
6×2− 2

3×2− 1
4 = 1

12 > 0. If f3(v) ≤ 1, then ch′(v) ≥ ch(v)− 7
6− 2

3×4 = 1
6 > 0.

If d(v) = 6, then f3(v) ≤ 4. If f3(v) = 4, then f4(v) = 0. And by Lemma
3(1), we can get n3(v) ≤ 1 . So ch′(v) ≥ ch(v)− 3

2 × 2− 7
6 × 2− 1

3 × 2 = 0. If

f3(v) = 3, then f4(v) ≤ 1. Thus ch′(v) ≥ ch(v)− 3
2 × 2− 7

6 − 1− 2
3 = 1

6 > 0 by
Lemma 3. If f3(v) = 2, then f4(v) ≤ 3. And if the two 3-faces are adjacent,
then ch′(v) ≥ ch(v) −max{ 3

2 + 7
6 + 3 + 1

3 ,
3
2 × 2 + 1 × 2 + 1

2 + 1
3 ,

3
2 × 2 + 1 ×

2 + 1
3 × 2} = 0 by Lemmas 3(1), 4(5) and our discharging rules. Otherwise,

ch′(v) ≥ ch(v) − 3
2 − 7

6 − 3 − 1
3 = 0 by Lemma 3(1). If f3(v) ≤ 1, then

ch′(v) ≥ ch(v)−max{ 3
2 + 4 + 1

3 , 6} = 0.
If d(v) = 7, this situation is very complicated. For convenience, we introduce

some more notations and definitions. An l-fan (or simply Fl) is a configura-
tion consisting of l consecutive faces around v and their edges incident with
v, starting and ending with (2, 7)-edges, and containing no other (2, 7)-edge
incident with v. An l-fan with consecutive faces f1, f2, . . . , fl is often said to
be a (k+1 , k

+
2 , . . . , k

+
l )-fan if d(f1) ≥ k1, d(f2) ≥ k2, . . . , d(fl) ≥ kl. And we use

τ(v → x) to denote the sum of the charges that v sends to x.

Lemma 5. (1) τ(v → F2) ≤ 3
2 . Especially, if F2 is a (4, 4)-fan and incident

with a 6+-neighbor of v, or if F2 is a (4, 5)-fan and v is adjacent to at least three

2-vertices, or if F2 is a (4+, 6+)-fan or a (5+, 5+)-fan, then τ(v → F2) ≤ 1.
(2) τ(v → F3) ≤ 5

2 . Especially, if F3 is a (4, 5, 4)-fan and v is adjacent to at

least three 2-vertices, or if F3 is a (4+, 6+, 4+)-fan, or a (4+, 4+, 6+)-fan, or a

(4+, 5+, 5+)-fan, or a (5+, 4+, 5+)-fan, or if F3 is a (4, 4, 4)-fan and incident

with two 4+-neighbors of v or at least a 6+-neighbor of v, then τ(v → F3) ≤ 2.
(3) τ(v → F4) ≤ 15

4 . Especially, if F4 contains at most one 3-face, then

τ(v → F4) ≤ 7
2 .

(4) τ(v → F5) ≤ 29
6 . Especially, if F5 contains exactly three 3-faces or at

most one 3-face, then τ(v → F5) ≤ 9
2 .

(5) τ(v → F6) ≤ 6.

Proof. (1) Suppose F2 is a 2-fan incident with v. Then it must be a (4+, 4+)-
fan by Lemma 3(2). Let u be the 3+-neighbor of v that incident with F2. If
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F2 is a (4, 4)-fan, then τ(v → F2) ≤ 3
4 × 2 = 3

2 by Lemma 3(7). Otherwise,

τ(v → F2) ≤ 1 + 1
3 = 4

3 < 3
2 . And especially, if F2 is a (4, 4)-fan and d(u) ≥ 6,

then τ(v → F2) ≤ 1
2 ×2 = 1 by our discharging rules. If F2 is a (4, 5)-fan and v

is adjacent to at least three 2-vertices, then τ(v → F2) ≤ max{ 3
4+

1
4 ,

1
2+

1
3} = 1

by Lemma 4(1). The rest of the proof is obvious by our discharging rules.
(2) Suppose F3 is a 3-fan incident with v, and f1, f2, f3 are the three con-

secutive faces. Let vu be the common edge between f1 and f2, and vw be the
common edge between f2 and f3. Without loss of generality, we can assume
that d(f1) ≤ d(f3). If d(f2) = 3, d(f1) = 4, then d(f3) ≥ 6. Thus τ(v → F3) ≤
max{ 3

4 + 7
6 ,

3
2 + 1

2} ≤ 2 < 5
2 by Lemma 3(11). If d(f2) = 3, d(f1) = 5, then

τ(v → F3) ≤ 3
2 +

2
3 < 5

2 . Otherwise, τ(v → F3) ≤ max{ 3
2 ,

3
4 × 2+1, 2+ 1

3} = 5
2

by Lemma 3(8). Especially, if F3 is a (4, 5, 4)-fan and v is adjacent to at least
three 2-vertices, then τ(v → F3) ≤ max{1+ 3

4 +
1
4 , 1+

2
3 +

1
3 ,

3
4 × 2+ 1

3} ≤ 2 by
Lemma 4(2). If F3 is a (4, 4, 4)-fan and incident with two 4+-neighbors of v or
at least a 6+-neighbor of v, then τ(v → F3) ≤ max{ 3

4 × 2 + 1
2 ,

1
2 × 2 + 1} = 2

by our discharging rules. The rest of the proof is obvious, we omit here.
(3) Suppose F4 is a 4-fan incident with v. Then F4 contains at most two

3-faces. If F4 contains exactly two 3-faces, then it contains at most one 4-face.
Thus τ(v → F4) ≤ max{ 3

4 +
7
6 +

3
2 +

1
3 ,

3
2 × 2+ 2

3} = 15
4 by Lemmas 3(5), 3(11)

and our discharging rules. Otherwise, τ(v → F4) ≤ max{2 + 3
2 ,

3
2 + 1 + 2

3 ,
3
4 ×

2 + 2, 3 + 1
3} = 7

2 by Lemma 3(9).
(4) Suppose F5 is a 5-fan incident with v. Then F5 contains at most three 3-

faces. If F5 contains exactly three 3-faces, then it contains no 4-face and 5-face.
Thus τ(v → F5) ≤ max{1+ 3

2×2, 32 +
7
6×2} = 4 by Lemma 3(5). If F5 contains

exactly two 3-faces, then it contains at most two 4-faces. Thus τ(v → F5) ≤
max{ 7

6+
3
2+

3
4+1+ 1

3 ,
3
2×2+ 3

4×2+ 1
3 ,

3
2×2+1+ 1

3×2} = 29
6 by Lemmas 3(5), 3(11)

and 3(12). Otherwise, τ(v → F5) ≤ max{ 3
2 +3, 32 +2+ 2

3 , 4+
1
3 ,

3
4 × 2+3} = 9

2
by Lemma 3(10).

(5) Suppose F6 is a 6-fan incident with v. Then F6 contains at most three
3-faces. If F6 is a (4+, 3, 3, 3, 4+, 4+)-fan, then τ(v → F6) ≤ max{ 7

6×3+ 3
4×2+

1, 1+ 7
6+

3
2+

3
4×3, 76×2+ 3

2+
3
4×2+ 2

3 ,
7
6×2+ 3

2+
3
4+1+ 1

3 ,
7
6+

3
2×2+ 3

4×2+ 1
3 ,

7
6+

3
2×

2+1+ 2
3} = 6 by Lemmas 3(5), (11), (12). If F6 is a (4

+, 3, 4+, 3, 3, 4+)-fan, then

τ(v → F6) ≤ max{ 3
2×3+ 1

3×3, 32×2+ 7
6+

3
4+

2
3 ,

3
2×3+ 1

3+1, 76+
3
2×2+ 3

4×2} =
35
6 ≤ 6. If F6 contains exactly two 3-faces, then F6 contains at most three 4-

faces. Thus τ(v → F6) ≤ max{ 3
2 × 2+ 2× 1+ 1

3 × 2, 3
2 × 2+ 3× 1, 76 +

3
2 +

3
4 +

2+ 1
3 ,

3
2 × 2+ 3

4 × 2+ 1+ 1
3} = 6 by Lemmas 3(5), (11), (12), (13). Otherwise,

τ(v → F6) ≤ max{ 3
2 + 4× 1 + 1

3 , 6× 1} = 6. �

Now we come back to check the new charge of 7-vertex v and consider eight
cases in the following.

Case 1. n2(v) = 7. Then f6+(v) = 7 by Lemmas 2 and 3(6). So ch′(v) ≥
ch(v)− 7 = 1.
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Case 2. n2(v) = 6. Then f3(v) = 0 and f6+(v) ≥ 5 by Lemmas 3(2) and 3(6).
Thus ch′(v) ≥ ch(v)− 6− 2 = 0.

Case 3. n2(v) = 5. Then there are three possibilities in which 2-vertices are
located. Various situations can see Fig. 3.

(2) (3)(1)

Figure 3. n2(v) = 5

For Fig. 3(1), f6+(v) ≥ 4. So ch′(v) ≥ ch(v) − 5 − 5
2 = 1

2 > 0 by Lemma

5(2). For Fig. 3(2) and 3(3), f6+(v) ≥ 3. So ch′(v) ≥ ch(v)− 5− 3
2 × 2 = 0 by

Lemma 5(1).

Case 4. n2(v) = 4. Then there are four possibilities in which 2-vertices are
located. Various situations can see Fig. 4.

(2) (3) (4)(1)

Figure 4. n2(v) = 4

For Fig. 4(1), f6+(v) ≥ 3. So ch′(v) ≥ ch(v) − 4 − 15
4 = 1

4 > 0 by Lemma
5(3). For Fig. 4(2) and 4(3), f6+(v) ≥ 2 and v is incident with a 2-fan and a 3-
fan. So ch′(v) ≥ ch(v)−4− 3

2 − 5
2 = 0 by Lemmas 5(1) and 5(2). For Fig. 4(4),

f6+(v) ≥ 1 and v is incident with three 2-fans. If they are all (4, 4)-fan, then v
is adjacent to a 6+-vertex by Lemma 3(15). So ch′(v) ≥ ch(v)−4− 3

2×2−1 = 0
by Lemma 5(1).

Case 5. n2(v) = 3. Then there are four possibilities in which 2-vertices are
located. Various situations can see Fig. 5.

For Fig. 5(1), f6+(v) ≥ 2. Then ch′(v) ≥ ch(v)− 3− 29
6 = 1

6 > 0 by Lemma
5(4). For Fig. 5(2), v is incident with a 2-fan and a 4-fan. If F4 contains at
most one 3-face, then ch′(v) ≥ ch(v)− 3− 3

2 − 7
2 = 0 by Lemmas 5(1) and 5(3).

If F4 contains two 3-faces and F2 is a (4+, 5+)-fan, then ch′(v) ≥ ch(v) − 3 −
1− 15

4 = 1
4 > 0 by Lemma 5. Otherwise, if F2 is a (4, 4)-fan, then F4 must be a
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(1) (2) (3) (4)

Figure 5. n2(v) = 3

(4+, 3, 3, 6+)-fan. So ch′(v) ≥ ch(v)−3− 3
2−max{ 3

4+
7
6+

3
2 ,

3
2×2+ 1

3} = 1
12 > 0

by Lemmas 3(5) and 3(11). For Fig. 5(3), v is incident with two 3-fans. Thus
ch′(v) ≥ ch(v)−3− 5

2×2 = 0 by Lemma 5(2). For Fig. 5(4), v is incident with a
3-fan and two 2-fans. Suppose F3 contains one 3-face. If v is incident with two
(4, 4)-fan, then F3 must be a (6+, 3, 6+)-fan. So ch′(v) ≥ ch(v)−3− 3

2×2− 3
2 =

1
2 > 0 by Lemma 5(1). Otherwise, if v is incident with at least a (4+, 5+)-fan,

then ch′(v) ≥ ch(v)− 3− 3
2 − 1− 5

2 = 0. Suppose F3 contains no 3-face. If v is
incident with two (4, 4)-fan, then F3 must be a (4, 4+, 4)-fan, or a (4, 4+, 6+)-
fan, or a (6+, 4+, 6+)-fan. Thus ch′(v) ≥ ch(v)−3−max{ 3

2×2+2, 32+1+ 5
2} = 0

by Lemmas 3(8), 3(16) and Lemma 5. Otherwise, v is incident with at least a
(4+, 5+)-fan, then ch′(v) ≥ ch(v)− 3− 3

2 − 1− 5
2 = 0.

Case 6. n2(v) = 2. Then there are three possibilities in which 2-vertices are
located. Various situations can see Fig. 6.

(1) (2) (3)

f1

f2

f3

f4 f5

f6

f7

Figure 6. n2(v) = 2

For Fig. 6(1), if d(f1) = 5, then d(f2) ≥ 6 and d(f7) ≥ 6. Thus ch′(v) ≥
ch(v) − 2 − 3

2 × 3 − 1 − 1
3 = 1

6 > 0. Otherwise, ch′(v) ≥ ch(v) − 2 − 6 = 0
by Lemma 5(5). For Fig. 6(2), v is incident with a 2-fan and a 5-fan. If F5

contains three 3-faces or at most one 3-face, then ch′(v) ≥ ch(v)−2− 3
2 − 9

2 = 0
by Lemma 5. Suppose F5 contains exactly two 3-faces. If F2 is a (4+, 6+)-fan
or a (5+, 5+)-fan, then ch′(v) ≥ ch(v) − 2 − 1 − 29

6 = 1
6 > 0 by Lemma 5.

Otherwise, if F2 is a (4, 4)-fan or a (4, 5)-fan, then ch′(v) ≥ ch(v) − 2 − 3
2 −

max{ 3
2 × 2 + 1 + 1

3 ,
3
4 + 1 + 7

6 + 3
2 ,

3
4 × 2 + 3

2 × 2} = 0 by Lemmas 3(5) and
3(12). For Fig. 6(3), v is incident with a 3-fan and a 4-fan. If F4 contains at
most one 3-face, then ch′(v) ≥ ch(v)− 2− 7

2 − 5
2 = 0 by Lemma 5. Otherwise,
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ch′(v) ≥ ch(v)−2−max{ 3
2 ×2+ 1

3 ×2+ 3
2 ,

3
2 ×2+ 1

3 +
5
2 ,

3
2 +

7
6 +

3
4 +

1
3 +

3
2 ,

3
2 +

7
6 + 3

4 + 5
2} = 1

12 > 0 by Lemmas 3(5) and 3(11) and our discharging rules.

Case 7. n2(v) = 1. Note that f3(v) ≤ 5. Let u be the unique 2-vertex adjacent
to v. We split the proof into six cases.

Subcase 7.1. f3(v) = 5. Then f4(v) = f5(v) = 0. So ch′(v) ≥ ch(v)− 1− 3
2 −

7
6 × 4 = 5

6 > 0 by Lemmas 3(3) and 3(4).

Subcase 7.2. f3(v) = 4. Various situations are illustrated in Fig. 7.

(1) (2) (3)

Figure 7

If uv is incident with a 3-face, then the other three 3-faces are not incident
with 3-vertices by Lemmas 3(3) and 3(4). For Fig. 7(1), f6+(v) ≥ 1, thus
ch′(v) ≥ ch(v)− 1− 3

2 − 7
6 × 3− 2 = 0. For Fig. 7(2) and 7(3), f4(v) ≤ 1, thus

ch′(v) ≥ ch(v)− 1− 3
2 − 7

6 × 3− 1− 2
3 = 1

3 > 0. Now suppose uv is not incident

with a 3-face. For Fig. 7(1), f6+(v) ≥ 2, thus ch′(v) ≥ ch(v)−1− 3
2 ×4−1 = 0.

For Fig. 7(2), f4(v) ≤ 1, thus ch′(v) ≥ ch(v)− 1−max{ 3
2 × 4 + 1

3 × 3, 3
2 × 3 +

7
6 + 1 + 1

3} = 0 by Lemma 4(3).

Subcase 7.3. f3(v) = 3. Various situations are illustrated in Fig. 8.

(1) (4)(3)(2)

Figure 8

Suppose uv is incident with a 3-face. For Fig. 8(1), f6+(v) ≥ 2, thus ch′(v) ≥
ch(v) − 1 − 3

2 − 7
6 × 2 − 2 = 7

6 > 0. For Fig. 8(2)-8(4), f4(v) ≤ 3, thus

ch′(v) ≥ ch(v) − 1 − 3
2 − 7

6 × 2 − max{3, 2 + 2
3} = 1

6 > 0. Suppose uv is
not incident with a 3-face. For Fig. 8(1), f6+(v) ≥ 2, thus ch′(v) ≥ ch(v) −
1 − 3

2 × 3 − 2 = 1
2 > 0. For Fig. 8(2) and 8(3), f4(v) ≤ 2, thus ch′(v) ≥

ch(v) − 1 − 3
2 × 3 −max{2 + 1

3 , 1 +
1
3 × 3} = 1

6 > 0. For Fig. 8(4), f4(v) ≤ 1,

thus ch′(v) ≥ ch(v)− 1− 3
2 × 3− 1− 1

3 × 3 = 1
2 > 0.

Subcase 7.4. f3(v) = 2. Various situations are illustrated in Fig. 9.
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(1) (2) (3)

Figure 9

It’s obvious that f4(v) ≤ 4. Suppose uv is incident with a 3-face. Then
ch′(v) ≥ ch(v)− 1− 3

2 − 7
6 − 4− 1

3 = 0 by Lemmas 3(3) and 3(4). Suppose uv

is not incident with a 3-face. If f4(v) ≤ 3, then ch′(v) ≥ ch(v) − 1 − 3
2 × 2 −

3 − 1
3 × 2 = 1

3 > 0. Now we consider the case that f4(v) = 4. For Fig. 9(1),

ch′(v) ≥ ch(v) − 1 − max{ 3
2 × 2 + 3

4 × 2 + 2 + 1
3 ,

3
2 + 7

6 + 4 + 1
3} = 0 by

Lemmas 3(5), 3(14) and Lemma 4(4). For Fig. 9(2) and 9(3), f6+(v) ≥ 1. So
ch′(v) ≥ ch(v)− 1− 3

2 × 2− 4 = 0.

Subcase 7.5. f3(v) = 1. In this case, f4(v) ≤ 5. So ch′(v) ≥ ch(v)− 1− 3
2 −

5− 1
3 = 1

6 > 0.

Subcase 7.6. f3(v) = 0. It’s obvious that ch′(v) ≥ ch(v)− 1− 7 = 0.

Case 8. n2(v) = 0. In this case, f3(v) ≤ 5. If f3(v) = 5, then f6+(v) = 2.
Thus ch′(v) ≥ ch(v) − 3

2 × 5 = 1
2 > 0. If f3(v) = 4, then f4(v) ≤ 1. Thus

ch′(v) ≥ ch(v) − 3
2 × 4 − 1 − 2

3 = 1
3 > 0. If 1 ≤ f3(v) ≤ 3, then f5+(v) ≥ 1.

Thus ch′(v) ≥ ch(v)− 3
2 × f3(v) − (6− f3(v))× 1− 1

3 = 5
3 − 1

2 × f3(v) > 0. If
f3(v) = 0, then ch′(v) ≥ ch(v)− 7 = 1 > 0.

Hence we complete the proof of Theorem 1.
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