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MINIMAL GRAPHS WITH PLANAR ENDS

Sun Sook Jin*

Abstract. In this article, we consider an unbounded minimal graph
M ⊂ R3 which is contained in a slab. Assume that ∂M consists
of two Jordan curves lying in parallel planes, which is symmetric
with the reflection under a plane. If the asymptotic behavior of M
is also symmetric in some sense, then we prove that the minimal
graph is itself symmetric along the same plane.

1. Introduction

In 1956, M. Shiffman [8] proved three elegant theorems about a min-
imal annulus A lying on a slab S(−1, 1), where

S(a, b) := {(x1, x2, x3) ∈ R3 | a ≤ x3 ≤ b, a, b ∈ R},
such that the boundary curves are continuous convex Jordan curves
contained in parallel planes at height ±1, respectively, as follows:

1. For all −1 < t < 1, the intermediate curve A∩Pt contained on the
horizontal plane Pt is a strictly convex Jordan curve where

Pt := {(x1, x2, x3) ∈ R3 |x3 = t}.
In particular, the minimal annulus A is an embedding.

2. If ∂A is a union of circles, then A∩Pt is a circle for all −1 ≤ t ≤ 1.
3. If ∂A is symmetric with respect to a plane perpendicular to x1x2-

plane, then A is symmetric with respect to the same plane.
We will consider the third result of Shiffman in the case of unbounded
minimal graphs. Recall that the asymptotic behavior of a complete,
embedded minimal surface in R3 with finite total curvature is well-
understood. Particularly, R. Schoen [7] demonstrated that, after a rota-
tion, each embedded end of a complete minimal surface with finite total
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curvature can be parametrized as a graph u over the exterior of a disk
in the (x1, x2)-plane by;

(1.1) u(x1, x2) = β1 + β2 log r +
α1x1 + α2x2

r2
+ O(r−2)

for r = (x2
1 + x2

2)
1/2 sufficiently large, where α1, α2, β1 and β2 are real

constants and O(r−2) denotes a function such that r2O(r−2) is bounded
as r →∞. If β2 = 0 then the end is asymptotic to a plane, we say it a
planar end, otherwise it is asymptotic to a catenoid. From the physical
point of view, minimal surfaces in R3 are objects submitted to a balanced
force system. Precisely, the action of the unit conormal vector around
a closed curve in the surface relates a tendency of rotation around an
axis, i.e., angular momentum, which is expressed by the torque vector
of the surface around the closed curve.

In this paper, we will prove a symmetry result about an unbounded
minimal graph which has an asymptotic symmetric property around its
end as following:

Theorem 1.1. Let M ⊂ S(a, b) be a minimal graph with an end E
such that ∂M consists of two Jordan curves Γ1 and Γ2 lying in parallel
planes of ∂S(a, b). And let Γ1 ∪ Γ2 be symmetric with respect to the
reflection under a plane P . If the torque of E has the normal direction
of P , then M is itself symmetric under the reflection through the same
plane.

2. Main results

Since M is contained in a slab, the end E must close to a horizontal
plane by [7]. We may assume that a < 0 < b of S(a, b) and β1 = 0
in (1.1), i.e., E closes to P0, asymptotically. Notice that, the minimal
graph M is conformally equivalent to the punctured annulus

A∗R := {z ∈ C | 1
R

< |z| < R} \ {p}, 1
R

< |p| < R

where R > 1. We have a conformal harmonic map

X = (X1, X2, X3) : A∗R → R3

such that X(A∗R) = M . Then, after a suitable conformal change of the
domain, we can say that

X3(z) =
1

log r
log |z − p|
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for some r > 1. Moreover, except at P0, M meets every horizontal plane
in a compact Jordan curve, and hence X3 can be continuously extended
to the whole domain AR. It is clear that

2
∂X3

∂z
=

d

dz

(
1

log r
log(z − p)

)
=

1
log r

1
(z − p)

.

By the Weierstrass representation theorem, see [2], it is well known that

g(z)f(z) = 2
∂X3

∂z

where g is the stereographic projection of the Gauss map of X with
respect to the north pole, just say the Gauss map of X, and f is a
holomorphic function on AR. Since both z and dz have no a zero or a
pole at z = 0, the (extended) Gauss map has the minimum branching
order two at the puncture. In general, for a planar end E which closes
to a plane Π, (E ∩Π) \B, B being a large ball, consists of 2k− 2 curves
which are asymptotic to 2k − 2 rays on Π making an equal angle of
π/(k− 1). In particular, if the (extended) Gauss map g has a zero (or a
pole) of the minimum branching order 2, i.e., g(z) = z2, at the puncture,
then M ∩ Π is an immersion of R1 which is asymptotically parallel to
the line in Π. In our case, M ∩ P0 approximate to the line `, where

(2.1) ` : α1x1 + α2x2 = 0, x3 = 0

as the notations in (1.1), see [2]. Observe that we can define the flux
and the torque of the planar end as following;

Proposition 2.1 ([3]). We define the flux and the torque associated
to the planar end E as those of one representative curve γ. With the
simple calculation, we can compute that;

Flux(E) =
∫

γ
ν ds = (0, 0, 0)

Torque(E) =
∫

γ
X ∧ ν ds = −π(−α2, α1, 0)(2.2)

where αi, i = 1, 2, is defined as in (1.1). Observe that the torque of E
does not depend upon the base point of X since the flux vanishes.

Note that we can take a representative curve of the planar end E, for
example, E ∩ ∂B. The above proposition shows us that the torque of E
has the direction of M ∩ P0 asymptotically. Thus Torque(E) describes
the asymptotic behavior of the end. Now, without loss of generality,
we may assume that ∂M = Γ1 ∪ Γ2 is symmetric under the x1x3-plane,
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called P . Then α2 = 0, since the torque of E must be normal to P . Let
us denote the minimal graph of E by;

u : Ω → R

where Ω ⊂ P0 = R2 is an unbounded domain whose boundary consists
of two disjoint Jordan curves. Until now, we have shown that

(2.3) u(x1, x2) =
α1x1

r2
+ O(r−2)

for large r > 0. Consider the reflection of M along the x1x3-plane,
denoted by Ref(M). Take another minimal graph ũ : Ω → R such that

ũ(x1, x2) = u(x1,−x2)

then the image of ũ is Ref(M). By the definition of ũ and (2.3), it is
clear that

ũ(x1, x2) =
α1x1

r2
+ O(r−2).

Now we can conclude that

(2.4) u− ũ = O(r−2)

near the infinity. Since every minimal graph is harmonic on a conformal
domain,

∆(u− ũ) = 0 on Ω
where ∆ is the Laplace operator. Additionally,

(2.5) u ≡ ũ on ∂Ω

since ∂M is invariant under the reflection along the x1x3-plane. Recall
Ω is conformally equivalent to the punctured annulus A∗R. Let

φ : A∗R → Ω ∪ {∞}
be a conformal mapping such that φ(p) = ∞. By (2.4) the harmonic
function

(u− ũ) ◦ φ : AR \ {p} → R

has the removable singularity at the puncture p, so we can define the
extending harmonic function φ̃ on the whole domain AR such that

φ̃(z) =
{

(u− ũ)(φ(z)) if z ∈ A∗R
0 if z = p

Observe that φ̃|∂AR
≡ 0 by (2.5). Therefore the harmonic function φ̃ is

equal to zero on the whole domain AR, and we can say that

u ≡ ũ on AR.
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It shows that the minimal surface M is itself symmetric under the re-
flection along the x1x3-plane.

References

[1] Y. Fang, On minimal annuli in a slab, Comm. Math. Helv. 69 (1994), 417-430.
[2] Y. Fang, Lectures of minimal surfaces in R3, Proceedings of the centre for

mathematics and its applications of Australian national university 35 (1996)
[3] S. S. Jin, Axes of a minimal surface with planar ends, J. of Chungcheong Math.

Soc. 20 (2007), no. 1, 71-80.
[4] S. S. Jin, Symmetry of minimal surfaces, J.of Chungcheong Math. Soc. 23

(2010), no. 2, 251-256.
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