• Title/Summary/Keyword: pinning force

Search Result 51, Processing Time 0.026 seconds

Inter- and Intra-granular Critical Current in $Bi_{1.4}Pb_{0.6}Sr_2Ca_2Cu_{3.6}O_x$ Superconducting Oxide

  • Choy, Jin-Ho;Kim, Seung-Joo;Park, J.C.;Frohlich, K.;Dordor, P.;Grenier, J.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.6
    • /
    • pp.560-563
    • /
    • 1990
  • A.c. susceptibility for $Bi_{1.4}Pb_{0.6}Sr_2Ca_2Cu_{3.6}O_x$ superconductor is measured as a function of temperature at different value of a.c. magnetic field amplitude. Two transition steps are attributed to the intergranular and intragranular properties. Based on Bean's critical state model, intergranular critical current density, $J_c^{gb}$ (11 $A/cm^2$ at 77 K) and intragranular critical current density, $J_c^g (7{\times}10^3\;A/cm^2$ at 100 K) are estimated. The low values of $J_c^{gb}$and $J_c^g$ reflect a poor nature of coupling between grains and the low pinning force density of intragrain in $Bi_{1.4}Pb_{0.6}Sr_2Ca_2Cu_{3.6}O_x$ superconductor.

Deposition of BZO nano-sized dots on the substrate surface for the enhanced magnetic properties of superconducting films

  • Chung, Kook-Chae;Yoo, Jai-Moo;Kim, Young-Kuk;Wang, X.L.;Dou, S.X.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.12-15
    • /
    • 2008
  • Nano-sized dots have been formed on the buffered metal substrates using the novel approach of the electro-spray deposition, to modulate the substrate surface and induce the columnar defects in REBCO films grown on it. The $BaZrO_3$ precursor solution was synthesized and electro-sprayed out onto the negatively charged substrate surface. Using the electrostatic force, nano-sized dots can be grown and uniformly distributed on the buffered metal substrate. The height of BZO nanodots was observed above the 200nm, which are beneficial to induce the columnar defects onto the BZO as a seed. The density of BZO nanodots was also investigated and ${\sim}7.8/{\mu}m^2$ was obtained. As the deposition distance of electro-spray was shortened there was ${\sim}8times$ increase of density of nanodots. The optimization of process variables in electro-spray deposition are discussed in respect to the superconducting REBCO films processed by the Metal-Organic Deposition with the effective flux pinning properties.

The Magnetic Properties of FeBSiNb Alloy Ribbons with High Glass forming Ability (고 비정질 형성능을 가진 FeBSiNb 합금 리본의 자기적 특성)

  • Noh, Tae-Hwan;Kim, Gu-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.154-159
    • /
    • 2002
  • Amorphous FeBSiNb alloy ribbons having bulk glass forming ability and high saturation magnetic flux density were produced by single-roller melt spinning apparatus in the thickness range of 22∼102㎛. With the increase of thickness, the coercive force and squareness ratio decreased, while maximum permeability and AC permeability increased. However electrical resistivity was almost constant. Furthermore refined and complex magnetic domain structure was observed in thicker ribbons owing to the change in internal magnetic anisotropy. For the alloy with the thickness of 81㎛, small coercive force of 24 mOe and high effective permeability of 12,000 at 1㎑ were obtained, those are considered to be better comparing to the conventional soft magnetic amorphous alloys (∼20 ㎛). The good soft magnetic properties of the thick FeBSiNb amorphous alloys were attributed to the decrease in surface pinning effect during wall motion, appearance of perpendicular anisotropy and resulted domain refinement.

Magnetic Domain Walls at the Edges of Patterned NiO/NiFe Bilayers (패턴된 이중박막의 자구벽 특성조사)

  • Hwang, D.G.;Lee, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.176-181
    • /
    • 2003
  • The magnetic domain walls at the edges of a large patterned and exchanged-biased NiO(10-60 nm)/NiFe(10 nm) bilayers and their motions with applied field were investigated by magnetic force microscopy. Three kinds of domain walls, namely, head-to-head zig-zag and tail-to-tail zig-zag Bloch walls and straight Neel walls were found at specific edges of the unidirectional biased NiO(30 nm)/NiFe(10 nm) bilayer having the exchange biasing field (H$\sub$ex/) of 21 Oe. No walls were observed for the strong exchange-biased bilayer (60 nm NiO, H$\sub$ex/ = 75 Oe), while the amplitude of the zig-zag domain increased with decreasing exchange biasing. This may be explained by mutual restraint between H$\sub$ex/ and the demagnetization field of edge. We similarly investigated the magnetization reversal process, the subsequent motion of the walls and identified the pinning and nucleation sites during reversal.

Superconducting Properties of Large Single Grain Gd1.5Ba2Cu3O7-y Bulk Superconductors (대면적 단결정 Gd1.5Ba2Cu3O7-y 벌크 초전도체의 초전도 특성)

  • Kim, Chan-Joong;Park, Seung Yeon;Kim, Kwang-Mo;Park, Soon-Dong;Jun, Byung-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.569-574
    • /
    • 2012
  • Large single grain $Gd_{1.5}Ba_2Cu_3O_{7-y}$ (Gd1.5) bulk superconductors were fabricated by a top-seeded melt growth (TSMG) process using an $NdBa_2Cu_3O_{7-y}$ seed. The seeded Gd1.5 powder compacts with a diameter of 50 mm were subjected to the heating cycles of a TSMG process. After the TSMG process, the diameter of the single grain Gd1.5 compact was reduced to 43 mm owing to the volume contraction during the heat treatment. The superconducting transition temperature ($T_c$) of the top surface of the single grain Gd1.5 sample was as high as 93.5 K. The critical current densities ($J_cs$) at 77 K and 1T and 1.5 T were in ranges of 25,200-43,900 $A/cm^2$ and 10,000-23,000 $A/cm^2$, respectively. The maximum attractive force at 77 K of the sample field-cooled using an Nd-B-Fe permanent magnet (surface magnetic field of 0. 527 T) was 108.3 N; the maximum repulsive force of the zero field-cooled sample was 262 N. The magnetic flux density of the sample field-cooled at 77 K was 0.311T, which is approximately 85% of the applied magnetic field of 0.375 T. Microstructure investigation showed that many $Gd_2BaCuO_5$ (Gd211) particles of a few ${\mu}m$ in size, which are flux pinning sites of Gd123, were trapped within the $GdBa_2Cu_3O_{7-y}$ (Gd123) grain; unreacted $Ba_3Cu_5O_8$ liquid and Gd211 particles were present near the edge regions of the single grain Gd1.5 bulk compact.

(K,Na)NbO3-based Lead-free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy

  • Zhang, Mao-Hua;Thong, Hao Cheng;Lu, Yi Xue;Sun, Wei;Li, Jing-Feng;Wang, Ke
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.4
    • /
    • pp.261-271
    • /
    • 2017
  • Environment-friendly $(K,Na)NbO_3-based$ (KNN) lead-free piezoelectric materials have been studied extensively in the past decade. Significant progress has been made in this field, manifesting competitive piezoelectric performance with that of lead-based, for specific application scenarios. Further understanding of the relationship between high piezoelectricity and microstructure or more precisely, ferroelectric domain structure, domain wall pinning effect, domain wall conduction and local polarization switching underpins the continuous advancement of piezoelectric properties, with the help of piezoresponse force microscopy (PFM). In this review, we will present the fundamentals of scanning probe microscopy (SPM) and its cardinal derivative in piezoelectric and ferroelectric world, PFM. Some representative operational modes and a variety of recent applications in KNN-based piezoelectric materials are presented. We expect that PFM and its combination with some newly developed technology will continue to provide great insight into piezoelectric materials and structures, and will play a valuable role in promoting the performance to a new level.

Effect of Neutron irradiation in $Fe_{81}B_{13.5}_Si{3.5}C_2$Amorphous Ribbon (비정질 $Fe_{81}B_{13.5}_Si{3.5}C_2$ 리본의 중성자 조사에 따른 자기적 특성변화)

  • 김효철;홍권표;김철기;유성초
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.2
    • /
    • pp.49-52
    • /
    • 2000
  • The changes of magnetic properties in neutron irradiated F $e_{81}$ $B_{13.5}$S $i_{3.5}$ $C_2$ amorphous ribbon were studied by X-ray diffraction, hysteresis loop, temperature dependence of magnetization and complex permeability. The fluences of thermal ( $n_{th}$) and fast ( $n_{f}$) neutron were 6.95$\times$10$^{18}$ $n_{th}$ c $m^{-2}$ and 4.56$\times$10$^{16}$ $n_{f}$c $m^{-2}$ , respectively. The changes of XRD Profiles were not observable at the neutron irradiated sample. The complex permeability spectra showed that the permeability from domain wall motion decreased due to the increase of pinning force against domain motion by the neutron irradiation, and the relaxation frequency of rotational magnetization moved to higher frequency region. The measurement of hysteresis loop showed the increase of magnetic softness, related to rotational magnetization, but saturation magnetization was decreased in neutron irradiation sample. The Curie temperature was decreased in the neutron irradiated sample.e.e.e.

  • PDF

Influences of Magnetization Reversal and Magnetic Interaction on Coercivity of Sr-Ferrite Particles with Different Sizes (크기가 다른 Sr-Ferrite 입자의 자화 역전과 자기 상호작용이 보자력에 미치는 영향)

  • Kim, Hyeon Soo;Jeong, Soon Young;Kim, Kyung Min;Kwon, Hae-Woong
    • Journal of the Korean Magnetics Society
    • /
    • v.27 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • In this study, the influences of magnetization reversal and magnetic interaction on the coercivity of Sr-ferrite particles with different sizes were investigated through various magnetic measurements. The shape of the initial magnetization curve and the magnetic field dependence of the coercive force indicate that the magnetization reversal changes from domain nucleation to wall pinning as the particle size decreases. On the other hand, the Henkel plot, interaction field factor and ${\Delta}M(H)$ obtained from the DCD and IRM curves show that the strength of the dipolar interaction is increased with increasing the particle size. Therefore, it can be concluded that coercivity is closely related to magnetic interaction as well as magnetization reversal mechanism.

The Superconducting Properties of a High-Temperature Superconducting GdBCO-Coated Conductor (고온초전도 GdBCO 박막선재의 초전도 특성)

  • Yang, Seok Han;Song, Kyu Jeong
    • New Physics: Sae Mulli
    • /
    • v.68 no.12
    • /
    • pp.1293-1301
    • /
    • 2018
  • The basic magnetic properties of commercially available High-$T_c$ Superconductor (HTS) GdBCO-coated conductor (GdBCO-CCs) were investigated by using physical property measurement system-vibrating sample magnetometer (PPMS-VSM). From the zero-field-cooled (ZFC) m(T) curve, the $T_c$ was found to be ~93 K. After removing the background m(H) data, we obtained both the net m(H) data and the ${\Delta}m_{irr}$. The $H_{irr}(T)$ coincided very well with the power-law relation $H_{irr}=H_{irr}(0)(1-T/T_c)^n$ with $$n{\sim_=}1.19$$. The magnetic flux behavior was investigated by using the ${\delta}$ values in the relationship $J_c{\propto}{\Delta}m_{irr}{\propto}H^{-{\delta}}$. A ${\delta}{\approx}0$ region denoting an independent magnetic flux pinning effect, a ${\delta}{\approx}0.6{\sim}1.2$ region representing a collective flux pinning effect due to the interaction, and a ${\delta}{\gg}2$ region representing freely moving magnetic fluxes caused by the Lorentz force were observed. The boundary line between ${\delta}{\approx}0$ and ${\delta}{\approx}0.6{\sim}1.2$ is denoted by a $H_1$, and the one between ${\delta}{\approx}0.6{\sim}1.2$ and ${\delta}{\gg}2$ is denoted by a $H_2$. The ${\delta}(T)$ was obtained in the region of $H_1$ < H < $H_2$. As the temperature was decreased, the ${\delta}$ value gradually decreased.

Magnetic Properties of Transition Metal Doped La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti) (전이금속을 치환한 란탄망간산화물계 La0.5Ca0.5(Mn0.98TM0.02)O3(TM=Cr, Ti)의 자성 특성 연구)

  • Kang, J.H.;Jun, S.J.;Park, J.S.;Lee, Y.P.;Lee, Y.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.14-17
    • /
    • 2007
  • Magnetic properties of transition metal doped $La_{0.5}Ca_{0.5}(Mn_{0.98}TM_{0.02})O_3$(TM=Cr and Ti) are studied. The samples are synthesized by the conventional solid-state method. Using vibrating sample magnetometer magnetization-temperature measurement were carried out with zero field cooling and field cooling at 50 Oe. Cr-doped sample shows cluster or spin glass like behavior while Ti doped does not. Curie temperature obtained were decreased from that of LCMO(245.5 K). Curie temperatures of Cr-doped and Ti-doped samples are 235.5 K and 232.7 K, respectively. The temperature-dependent coercivity $H_c(T)$ was also measured. The coercive force continuously decreases with the substitution of Cr and Ti, The result can be understood in terms of the interaction between defect and domain wall.