DOI QR코드

DOI QR Code

Magnetic Domain Walls at the Edges of Patterned NiO/NiFe Bilayers

패턴된 이중박막의 자구벽 특성조사

  • 황도근 (상지대학교 컴퓨터전자물리학과) ;
  • 이상서 (상지대학교 컴퓨터전자물리학과)
  • Published : 2003.08.01

Abstract

The magnetic domain walls at the edges of a large patterned and exchanged-biased NiO(10-60 nm)/NiFe(10 nm) bilayers and their motions with applied field were investigated by magnetic force microscopy. Three kinds of domain walls, namely, head-to-head zig-zag and tail-to-tail zig-zag Bloch walls and straight Neel walls were found at specific edges of the unidirectional biased NiO(30 nm)/NiFe(10 nm) bilayer having the exchange biasing field (H$\sub$ex/) of 21 Oe. No walls were observed for the strong exchange-biased bilayer (60 nm NiO, H$\sub$ex/ = 75 Oe), while the amplitude of the zig-zag domain increased with decreasing exchange biasing. This may be explained by mutual restraint between H$\sub$ex/ and the demagnetization field of edge. We similarly investigated the magnetization reversal process, the subsequent motion of the walls and identified the pinning and nucleation sites during reversal.

금속마스크에 의해 패턴된 교환결합 이중박막 NiO(10∼60 nm)/NiFe(10 nm)의 모서리에서 발생한 여러 종류의 자구벽(magnetic domain wall)을 MFM(magnetic_ force microscopy)로 측정하였다. 박막의 모서리 경계선이 교환결합이방성 방향과 같은 방향일 때는 직선모양의 Neel 자구벽이 측정되었으며, 경계면이 이방성방향과 수직인 경우에는 zigzag Bloch 자구벽이 발견되었다. 이러한 자구벽은 NiO(60 nm)인 경우에는 교환결합세기(H$_{ex}$ = 75 Oe)가 박막경계면에서 발생한 반자장(demagnetization field) 세기보다 크기 때문에 발생하지 않았고, 교환결합세기가 약한 NiO(30 nm, H$_{ex}$ = 21 Oe)를 갖는 이중박막에서는 발견되었다. 이들 자구벽이 외부 자기장의 변화에 따라 움직이는 자화반전과정을 측정하기위해 $\pm$300 Oe까지 자기장을 가하면서 MFM을 측정하였다.

Keywords

References

  1. Phys. Pev. Lett. v.84 V.I.Nikitenko;V.S.Gornakov;A.J.Shapiro;R.D.Shull;K.Liu;S.M.Zhou;C.L.Chien https://doi.org/10.1103/PhysRevLett.84.765
  2. IEEE Trans. Magn. v.35 X.Portier;A.K.Petford Long;S.Mao;A.M.Goodman;H.Laidly;K.O'Grady https://doi.org/10.1103/PhysRevB.57.R8111
  3. Phys. Rev. B v.61 H.D.Chopra;D.X.Yang;P.J.Chen;H.J.Brown;L.J.Swartzendruber;W.F.Egelhoff,Jr https://doi.org/10.1063/1.367663
  4. J. App. Phys. v.85 Z.Qian;M.T.Kief;P.K.George;J.M.Sivertsen;J.H.Judy https://doi.org/10.1109/20.801094
  5. J. Magn. Magn. Mater. v.223 M.Cartier;S.Auffret;Y.Samson;P.Bayle-Guillemaud;B.Dieny https://doi.org/10.1103/PhysRevB.61.15312
  6. J. Appl. Phys. v.87 J.Yu;A.D.Kent;S.S.Parkin https://doi.org/10.1063/1.373416
  7. J. Appl. Phys v.79 J.Ding;J.Zhu https://doi.org/10.1063/1.369882
  8. J. Appl. Phys. v.87 T.Zhao;C.Hou;H.Fujiwara;H.Cho;J.W.Harrell;A.Khapilov https://doi.org/10.1016/S0304-8853(00)00591-6
  9. Phys. Rev. B v.57 V.I.Nikitenko;V.S.Gornakov;A.J.Shapiro;R.D.Shull;K.Liu;S.M.Zhou;C.L.Chien https://doi.org/10.1063/1.373244
  10. J. Appl. Phys. v.83 V.I.Nikitenko;V.S.Gornakov;A.J.Shapiro;R.D.Shull;K.Liu;S.M.Zhou;C.L.Chien https://doi.org/10.1063/1.362164
  11. J. Appl. Phys. v.87 H.D.Chopra;D.X.Yang;P.J.Chen;H.J.Brown;L.J.Swartzendruber;W.F.Egelhoff,Jr https://doi.org/10.1063/1.373211
  12. J. Appl. Phys. v.79 H.W.Huang;C.H.Lai;T.H.Wu https://doi.org/10.1063/1.372745