Browse > Article
http://dx.doi.org/10.3938/NPSM.68.1293

The Superconducting Properties of a High-Temperature Superconducting GdBCO-Coated Conductor  

Yang, Seok Han (Division of Science Education (Physics) and Institute of Science Education, Chonbuck National University)
Song, Kyu Jeong (Division of Science Education (Physics) and Institute of Science Education, Chonbuck National University)
Abstract
The basic magnetic properties of commercially available High-$T_c$ Superconductor (HTS) GdBCO-coated conductor (GdBCO-CCs) were investigated by using physical property measurement system-vibrating sample magnetometer (PPMS-VSM). From the zero-field-cooled (ZFC) m(T) curve, the $T_c$ was found to be ~93 K. After removing the background m(H) data, we obtained both the net m(H) data and the ${\Delta}m_{irr}$. The $H_{irr}(T)$ coincided very well with the power-law relation $H_{irr}=H_{irr}(0)(1-T/T_c)^n$ with $$n{\sim_=}1.19$$. The magnetic flux behavior was investigated by using the ${\delta}$ values in the relationship $J_c{\propto}{\Delta}m_{irr}{\propto}H^{-{\delta}}$. A ${\delta}{\approx}0$ region denoting an independent magnetic flux pinning effect, a ${\delta}{\approx}0.6{\sim}1.2$ region representing a collective flux pinning effect due to the interaction, and a ${\delta}{\gg}2$ region representing freely moving magnetic fluxes caused by the Lorentz force were observed. The boundary line between ${\delta}{\approx}0$ and ${\delta}{\approx}0.6{\sim}1.2$ is denoted by a $H_1$, and the one between ${\delta}{\approx}0.6{\sim}1.2$ and ${\delta}{\gg}2$ is denoted by a $H_2$. The ${\delta}(T)$ was obtained in the region of $H_1$ < H < $H_2$. As the temperature was decreased, the ${\delta}$ value gradually decreased.
Keywords
GdBCO-coated conductor; Irreversibility field; Characteristic field; Irreversibility magnetic moment; Indicated physical quantity ${\delta}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. C. Lim, K. J. Song and W. N. Kang, New Phys.: Sae Mulli 63, 1241 (2013).   DOI
2 J. C. Lim, K. J. Song and W. N. Kang, New Phys.: Sae Mulli 65, 1172 (2015).   DOI
3 B. D. Park and K. J. Song, New Phys.: Sae Mulli 67, 1264 (2017).   DOI
4 Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202 (1988).   DOI
5 M. Tinkham, Phys. Rev. Lett. 61, 1658 (1988).   DOI
6 S. Kang, A. Goyal, J. Li, P. Martin, A. Ijaduola et al., Physica C: Supercond. Appl. 457, 41 (2007).   DOI
7 S. H. Wee, A. Goyal, Y. Zuev and C. Cantoni, Supercond. Sci. Technol. 21, 092001 (2008).   DOI
8 N. Haberkorn, S. Suarez, P. D. Perez, H. Troiani and P. Granell et al., Physica C: Supercond. Appl. 542, 6 (2017).   DOI
9 D. X. Fischer, R. Prokopec, J. Emhofer and M. Eisterer, Supercond. Sci. Technol. 31, 044006 (2018).   DOI
10 S. Samoilenkov, A Molodyk, S Lee, V. Petrykin and V. Kalitka et al., Supercond. Sci. Technol. 29, 024001 (2016).   DOI
11 C. Senatore, C. Barth, M. Bonura, M. Kulich and G. Mondonico, Supercond. Sci. Technol. 29, 014002 (2016).   DOI
12 S. Kar, W. Luo, A. B. Yahia, X. Li and G. Majkic et al., IEEE/CSC & ESAS Superconductivity News Forum (April, 2018).
13 S. Kar, W. Luo, A. B. Yahia, X. Li and G. Majkic et al., Supercond. Sci. Technol. 31, 04LT01 (2018).   DOI
14 S. Yoon, J. Kim, K. Cheon, H. Lee and S. Hahn et al., Supercond. Sci. Technol. 29, 04LT04 (2016).   DOI
15 G. Nishijima, H. Kitaguchi and K. Takeda, IEEE Trans. Appl. Supercond. 28, 4300405 (2018).
16 V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie and M. Martchevski et al., IEEE Trans. Appl. Supercond. 19, 3225 (2009).   DOI
17 SuNAM 2G HTS wire specification: SuNAM Home page, http://www.i-sunam.com (accessed Aug. 10, 2018).
18 A. P. Malozemoff, Phys. C: Supercond. Appl. 530, 65 (2016).   DOI
19 J.-H. Lee, H. Lee, J.-W. Lee, S.-M. Choi and S.-I. Yoo et al., Supercond. Sci. Technol. 27, 044018 (2014).   DOI
20 J. W. Lee and S. I. Yoo, Prog. Supercond. Cryog. 14, 5 (2012).
21 G. Blatter, M. V. Feigelman, V. B. Geshkenbein, A. I. Larkin and V. M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).   DOI
22 C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).   DOI