• Title/Summary/Keyword: phytopathogenic bacteria

Search Result 59, Processing Time 0.024 seconds

Suppression of Bacterial Wilt in Tomato Plant Using Pseudomonas putida P84 (Pseudomonas putida P84 균주를 이용한 토마토 풋마름병의 억제)

  • Seo, Sang-Tae;Park, Jong-Han;Kim, Kyung-Hee;Lee, Sang-Hyun;Oh, Eun-Sung;Shin, Sang-Chul
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.32-36
    • /
    • 2008
  • Bacterial wilt caused by Ralstonia solanacearum has become a severe problem on tomato in Korea and no effective control measures are available yet. Pseudomonas species play key roles for the biocontrol of many plant diseases especially in soil. A rhizobacterial population of 150 Pseudomonas strains, isolated from the rhizosphere soil of various plants grown at different sites, was screened for 2,4-diacetylphloroglucinol producing gene (PhlD) by PCR. Two strains (P83 and P84) among them were found to be phlD positive. When the isolates were analysed by 16S rDNA (Sensu Stricto), all isolates yielded amplified products of 1,018bp. Of the 150 isolates of Pseudomonas spp., a bacterial strain P. putida P84 isolated from tomato rhizosphere showed to suppress a wide range of phytopathogenic bacteria in vitro. The best source of carbon for P84 strain were glucose, arabinose, inositol and melibiose. In greenhouse experiments, P84 strain suppressed the development of bacterial wilt in tomato with a control value of 60%.

Cultural characteristics of Bacillus velezensis HKB-1 in the water extract of the composted spent mushroom substrate of Lentinula edodes and biological control of Phytophthora blight disease of pepper (표고버섯 수확후배지 퇴비 추출물에서 Bacillus velezensis HKB-1의 배양적 특징 및 고추역병의 생물학적 방제)

  • Kim, Ja-Yoon;Seo, Hyun-Ji;Kang, Dae-Sun;Kang, Hee-Wan
    • Journal of Mushroom
    • /
    • v.19 no.4
    • /
    • pp.272-278
    • /
    • 2021
  • Bacillus velezensis HKB-1 was isolated from the composted spent mushroom substrate of Lentinula edodes (LeCSMS) and inhibited mycelial growth of phytopathogenic fungal species, Phythhopthora capsici, Collectotrichum coccodes and Fusarium oxysporium by more than 70%. B. velezensis HKB-1 showed bacterial growth rate 10 to 100 times higher than that of other commercial bacterial media in water extract of LeCSMS supplemented with 1% molasses. The LeCSMS medium was effective in promoting the growth of pepper and controlling Phytophthora blight disease of pepper.

Isolation and Characterization of Insoluble Phosphate-Solubilizing Bacteria with Antifungal Activity (항진균능을 가진 불용성 인산 가용화 세균의 분리 및 특성)

  • Park, Ki-Hyun;Son, Hong-Joo
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.223-229
    • /
    • 2006
  • To develop multifunctional microbial inoculant, an insluble phosphate-solubilizing bacterium with antifungal activity was isolated from plant rhizospheric soil. On the basis of its morphological, cultural and physiological characteristics and Biolog analysis, this bacterium was identified as Pseudomonas fluorescens RAF15. P. fluorescens RAF15 showed antifungal activities against phytopathogenic fungi Botrytis cinerea and Rhizoctonia solani. The optimal medium composition and cultural conditions for the solubilization of insoluble phosphate by P. fluorescens RAF15 were 1.5% of glucose, 0.005% of urea, 0.3% $MgCl_2{\cdot}6H_2\;0.01%\;of\;MgSO_4{\cdot}7H_2O\;0.01%,\;of\;CaCl_2{\cdot}2H_2O$, and 0.05% of NaCl along with initial pH 7.0 at $30^{\circ}C$. The soluble phosphate production under optimum condition was 863 mg/L after 5 days of cultivation. The solubilization of insoluble phosphates was associated with a drop in the pH of the culture medium. P. fluorescens RAF15 showed resistance against different environmental stresses like $10-35^{\circ}C$ temperature, 1-4% salt concentration and pH 2-11 range. The strain produced soluble phosphate to the culture broth with the concentrations of 971-1121 mg/L against $CaHPO_4$, 791-908 mg/L against $Ca_3(PO_4){_2}$, and 844 mg/L against hydroxyapatite, respectively. However, the strain produced soluble phosphate to the culture broth with the concentrations of 15 mg/L against $FePO_4$, and 5 mg/L against $AlPO_4$, respectively.

Complete Genome Sequence and Antimicrobial Activities of Bacillus velezensis MV2 Isolated from a Malva verticillate Leaf (아욱 잎에서 분리한 Bacillus velezensis MV2의 유전체 염기서열 분석과 항균활성능 연구)

  • Lee, Hyeonju;Jo, Eunhye;Kim, Jihye;Moon, Keumok;Kim, Min Ji;Shin, Jae-Ho;Cha, Jaeho
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.111-119
    • /
    • 2021
  • A bacterial strain isolated from a Malva verticillata leaf was identified as Bacillus velezensis MV2 based on the 16S rRNA sequencing results. Complete genome sequencing revealed that B. velezensis MV2 possessed a single 4,191,702-bp contig with 45.57% GC content. Generally, Bacillus spp. are known to produce diverse antimicrobial compounds including bacteriocins, polyketides, and non-ribosomal peptides. Antimicrobial compounds in the B. velezensis MV2 were extracted from culture supernatants using hydrophobic interaction chromatography. The crude extracts showed antimicrobial activity against both gram-positive bacteria and gram-negative bacteria; however, they were more effective against gram-positive bacteria. The extracts also showed antifungal activity against phytopathogenic fungi such as Fusarium fujikuroi and F. graminearum. In time-kill assays, these antimicrobial compounds showed bactericidal activity against Bacillus cereus, used as indicator strain. To predict the type of antimicrobial compounds produced by this strain, we used the antiSMASH algorithm. Forty-seven secondary metabolites were predicted to be synthesized in MV2, and among them, fourteen were identified with a similarity of 80% or more with those previously identified. Based on the antimicrobial properties, the antimicrobial compounds may be nonribosomal peptides or polyketides. These compounds possess the potential to be used as biopesticides in the food and agricultural industry as an alternative to antibiotics.

Selection of the Auxin and ACC Deaminase Producing Plant Growth Promoting Rhizobacteria from the Coastal Sand Dune Plants (Auxin과 ACC Deaminase를 생산하는 사구식물 복원용 근권세균의 선발)

  • Lim, Jong-Hui;Kim, Jong-Guk;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.268-275
    • /
    • 2008
  • In order to develop the multi-functional rhizobacteria that can exert positive effect on the growth of plants growing in the coastal sand dune located along East Coast of Korea, rhizospheral bacteria of 11 different plants from this area were isolated 1,330 rhizobacteria. Among these, 23 strains were able to produce auxin and had spectrum of antagonism toward various phytopathogenic microbes. To know the mechanism of this antifungal activity, these 23 strains were subjected to further analyses; 19 strains of these produced siderophore as determined by color reaction on CAS-blue plate, 4 strains produced antifungal cellulase as judged by color change on CMC-Congo red plate, 17 strains were able to utilized insoluble phosphate salts, also determined by clear zone formation on PVK medium. Identification of the strain was assigned to all 23 strains by l6s rDNA sequence analysed, and all were identified to be in the genus of Bacillus and Pseudomonas. One strain of these, denoted Pseudomonas fluorescens IB4-14, showed ACC deaminase activity which is known to be involved in the resistance of environmental stress such as salt and drought. Also, P. fluorescens IB4-l4 showed the germination stimulation and roots growth promoting activity on the in vivo assay of Lysimachia mauritiana Lam. (spoonleaf yellow loosestrife).

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12

  • Kim, K.;Lee, Y.;Ha, A.;Kim, Ji-In;Park, A.R.;Yu, N.H.;Son, H.;Choi, G.J.;Park, H.W.;Lee, C.W.;Lee, T.;Lee, Y.W.;Kim, J.C.
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.44-44
    • /
    • 2018
  • Fusarium head blight (FHB) caused by infection with Fusarium graminearum leads to enormous losses to crop growers, and may contaminate grains with a number of Fusarium mycotoxins that pose serious risks to human and animal health. Antagonistic bacteria that are used to prevent FHB offer attractive alternatives or supplements to synthetic fungicides for controlling FHB without the negative effects of chemical management. Out of 500 bacterial strains isolated from soil, Bacillus amyloliquefaciens JCK-12 showed strong antifungal activity and was considered a potential source for control strategies to reduce FHB. B. amyloliquefaciens JCK-12 produces several cyclic lipopeptides (CLPs) including iturin A, fengycin, and surfactin. Iturin A inhibits spore germination of F. graminearum. Fengycin or surfactin alone did not display any inhibitory activity against spore germination at concentrations less than 30 ug/ml, but a mixture of iturin A, fengycin, and surfactin showed a remarkable synergistic inhibitory effect on F. graminearum spore germination. The fermentation broth and formulation of B. amyloliquefaciens JCK-12 strain reduced the disease incidence of FHB in wheat. Furthermore, co-application of B. amyloliquefaciens JCK-12 and chemical fungicides resulted in synergistic in vitro antifungal effects and significant disease control efficacy against FHB under greenhouse and field conditions, suggesting that B. amyloliquefaciens JCK-12 has a strong chemosensitizing effect. The synergistic antifungal effect of B. amyloliquefaciens JCK-12 and chemical fungicides in combination may result from the cell wall damage and altered cell membrane permeability in the phytopathogenic fungi caused by the CLP mixtures and subsequent increased sensitivity of F. graminearum to fungicides. In addition, B. amyloliquefaciens JCK-12 showed the potential to reduce trichothecenes mycotoxin production. The results of this study indicate that B. amyloliquefaciens JCK-12 could be used as an available biocontrol agent or as a chemosensitizer to chemical fungicides for controlling FHB disease and as a strategy for preventing the contamination of harvested crops with mycotoxins.

  • PDF

Profiles of Bacillus spp. Isolated from the Rhizosphere of Suaeda glauca and Their Potential to Promote Plant Growth and Suppress Fungal Phytopathogens

  • Lu, Ping;Jiang, Ke;Hao, Ya-Qiao;Chu, Wan-Ying;Xu, Yu-Dong;Yang, Jia-Yao;Chen, Jia-Le;Zeng, Guo-Hong;Gu, Zhou-Hang;Zhao, Hong-Xin
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1231-1240
    • /
    • 2021
  • Members of the genus Bacillus are known to play an important role in promoting plant growth and protecting plants against phytopathogenic microorganisms. In this study, 21 isolates of Bacillus spp. were obtained from the root micro-ecosystem of Suaeda glauca. Analysis of the 16S rRNA genes indicated that the isolates belong to the species Bacillus amyloliquefaciens, Bacillus velezensis, Bacillus subtilis, Bacillus pumilus, Bacillus aryabhattai and Brevibacterium frigoritolerans. One of the interesting findings of this study is that the four strains B1, B5, B16 and B21 are dominant in rhizosphere soil. Based on gyrA, gyrB, and rpoB gene analyses, B1, B5, and B21 were identified as B. amyloliquefaciens and B16 was identified as B. velezensis. Estimation of antifungal activity showed that the isolate B1 had a significant inhibitory effect on Fusarium verticillioides, B5 and B16 on Colletotrichum capsici (syd.) Butl, and B21 on Rhizoctonia cerealis van der Hoeven. The four strains grew well in medium with 1-10% NaCl, a pH value of 5-8, and promoted the growth of Arabidopsis thaliana. Our results indicate that these strains may be promising agents for the biocontrol and promotion of plant growth and further study of the relevant bacteria will provide a useful reference for the development of microbial resources.

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6 (생물적 방제균 Pseudomonas chlororaphis O6의 길항 물질 생산 및 유기산 흡수에 관련된 dctA 유전자의 클로닝)

  • Han, Song-Hee;Nam, Hyo-Song;Kang, Beom-Ryong;Kim, Kil-Yong;Koo, Bon-Sung;Cho, Baik-Ho;Kim, Young-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.3
    • /
    • pp.134-144
    • /
    • 2003
  • A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.

Studies on the Germination Characters of Korean Ginseng (Panax ginseng C.A. Meyer) Seed (고려인삼종자(高麗人蔘種子)의 발아특성(發芽特性)에 관(關)한 연구(硏究))

  • Won, Jun Yeon;Jo, Jae Seong
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.47-68
    • /
    • 1988
  • This study was conducted to define the optimal conditions for embryo growth during seed stratification and for breaking dormancy as well as seed germination of stratified ginseng seeds. The experiments were also carried out to detect some materials which were expected to induce seed dormancy in the ginseng seeds. The results summarized as follows; 1. The growth of embryo during seed stratification was significantly inhibited by the existence of endocarp. The fastest embryo growth was resulted at $15^{\circ}C$ and an estimated optimal temperature for embryo growth was about $18^{\circ}C$. 2. There was no significant difference between the embryo growth and germination ratio of ginseng seeds which were sown in seed bed at Aug-5 without seed stratification and that of artificial seed stratification. 3. Embryo growth and germination ratio was significantly inhibited by high temperature treatment at $30^{\circ}C$ for 24 hours or respiration stress by immersing seeds in water for 10 days or more. 4. When the seed stratification was started at $10^{\circ}C$, growth of embryo in the ginseng seeds were almost stopped. But, when the seeds were stratified first at $20^{\circ}C$ for 50 days and next at $10^{\circ}C$ for 50 days, the embryo growth was significantly promoted compared with the embryo growth in the seeds which were stratified at $20^{\circ}C$ for 100 days. 5. The successive embryo growth after seed stratification was significantly accelerated at $10^{\circ}C$ but the seeds chilled at $5^{\circ}C$ for 100 days were resulted in the highest germination ratio as well as the shortest days for germination. 6. The successive embryo growth during chilling treatment and seed germination were significantly inhibited by immersing seeds in water just before chilling treatment or during chilling treatment and by interruption of chilling treatment with raising temperature to $20^{\circ}C$ for 20 days during chilling treatment. 7. The germination ratio of ginseng seeds which finished chilling treatment was highest at $10^{\circ}C$ and 62.5% was the estimated soil moisture for the best germination of ginseng seeds. The ginseng seeds were found to require high amount of oxygen for germination. 8. Only water soluble material in homogenized ginseng seeds showed a significant inhibiting effect on the seed germination of sesame, millet and soybean. Water soluble material dissolved from undehisced ginseng seeds showed stronger inhibiting effect on the seedling growth of sesame than material from dehisced ginseng seeds. Extraction temperature did not influence the inhibiting effect of the material dissolved from ginseng seeds on the seedling growth of sesame. 9. Water soluble materials dissolved from the berry pulps, leaves, fresh roots and dried roots also showed a significant inhibiting effect on the seedling growth of sesame. 10. Water soluble materials dissolved from the ginseng seeds, leaves and fresh roots showed a significant inhibiting effect on the germination of true fungi and the growth of spawn but the growth of phytopathogenic bacteria was not. 11. Among the water soluble materials dissolved from ginseng seeds, the materials of low molecular weight less than 3,000 were resulted a significant inhibiting effect on the seedling growth of sesame and the materials of high molecular weight also showed an inhibiting effect.

  • PDF