Browse > Article
http://dx.doi.org/10.5423/RPD.2008.14.1.032

Suppression of Bacterial Wilt in Tomato Plant Using Pseudomonas putida P84  

Seo, Sang-Tae (Korea Forest Research Institute)
Park, Jong-Han (National Horticultural Research Institute)
Kim, Kyung-Hee (Korea Forest Research Institute)
Lee, Sang-Hyun (Korea Forest Research Institute)
Oh, Eun-Sung (Korea Forest Research Institute)
Shin, Sang-Chul (Korea Forest Research Institute)
Publication Information
Research in Plant Disease / v.14, no.1, 2008 , pp. 32-36 More about this Journal
Abstract
Bacterial wilt caused by Ralstonia solanacearum has become a severe problem on tomato in Korea and no effective control measures are available yet. Pseudomonas species play key roles for the biocontrol of many plant diseases especially in soil. A rhizobacterial population of 150 Pseudomonas strains, isolated from the rhizosphere soil of various plants grown at different sites, was screened for 2,4-diacetylphloroglucinol producing gene (PhlD) by PCR. Two strains (P83 and P84) among them were found to be phlD positive. When the isolates were analysed by 16S rDNA (Sensu Stricto), all isolates yielded amplified products of 1,018bp. Of the 150 isolates of Pseudomonas spp., a bacterial strain P. putida P84 isolated from tomato rhizosphere showed to suppress a wide range of phytopathogenic bacteria in vitro. The best source of carbon for P84 strain were glucose, arabinose, inositol and melibiose. In greenhouse experiments, P84 strain suppressed the development of bacterial wilt in tomato with a control value of 60%.
Keywords
Bacterial wilt; Biocontrol; Ralstonia solanacearum; Tomato;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cook, D., Barlow, E. and Sequeira, L. 1989. Genetic diversity of Pseudomonas solanacearum: Detection of restriction fragment length polymorphism with DNA probes that specify virulence and the hypersensitive response. Mol. Plant-Microbe Interact. 2: 113-121   DOI
2 De La Fuente, L., Thomashow, L. S., Weller, D. M., Bajsa, N., Quagliotto, L., Chernin, L. and Arias, A. 2004. Pseudomonas fluorescens UP61 isolated from birdsfoot trefoil rhizosphere produces multiple antibiotics exerts a broad spectrum of biocontrol activity. Eur. J. Plant Pathol. 110: 671-681   DOI   ScienceOn
3 Elabyad, M. S., Elsayed, M. A., Elshanshoury, A. R. and Elsabbagh, S. M. 1993. Towards the biological control of fungal and bacterial diseases of tomato using antagonistic Streptomyces spp. Plant Soil 149: 185-195   DOI
4 Gamalero, E., Lingua, G., Berta and Lemanceau, P. 2003. Methods for studying root colonization by introduced beneficial bacteria. Agronomie 23: 407-418   DOI   ScienceOn
5 He, L. Y., Sequeira, L. and Kelman, A. 1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis. 67: 1357-1361   DOI
6 Picard, C., Di Cello, F., Ventura, M., Fani, R. and Guckert, A. 2000. Frequency and biodiversity of 2,4-Diacetylphloroglucinolproducing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948-955   DOI
7 Yabuuchi, E., Kosako, Y., Yano. I., Hota, H. and Nishiuchi, Y. 1995. Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov., Ralstonia solanacearum (Smith, 1986) comb. nov. Microbiol. Immun. 39: 897-904   DOI
8 Ran, L. X., Liu, C. Y., Wu, G. J., Loon, L. C. and Baaker, P. A. H. M. 2005. Suppression of bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. in China. Biol. Control 32: 111-120   DOI   ScienceOn
9 Terry, L. A. and Joyce, D. C. 2004. Elicitors of induced disease resistance in postharvest horticultural crops: A brief review. Postharvest Biol. Technol. 32: 1-13   DOI   ScienceOn
10 Park, K., Ahn, I. P. and Kim, C. H. 2001. Systemic resistance and expression of the pathogenesis-related genes mediated by the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens EXTN-1 against anthracnose disease in cucumber. Mycobiology 29: 48-53   과학기술학회마을   DOI
11 서상태, 박종한, 한경숙, 정승룡. 2006. 포도 잿빛곰팡이병의 생물적 방제를 위한 길항세균 선발. 식물병연구 12: 267-271   과학기술학회마을   DOI
12 Winding, A., Binnerup, S. J. and Pritchard, H. 2004. Non-target effects of bacterial biological control agents suppressing root pathogenic fungi. FEMS Microbiol. Ecol. 47: 129-141   DOI   ScienceOn
13 Vidhyasekaran, P., Sethuraman, K., Rajappan, K. and Vasumathi, K. 1997. Powder formulations of Pseudomonas fluorescens to control pigeonpea wilt. Biol. Control 8: 166-171   DOI   ScienceOn
14 Moss, W. P., Byrne, J. M., Campbell, H. L., Ji, P., Bonas, U., Jones, J. B. and Wilson, M. 2007. Biological control of bacterial spot of tomato using hrp mutants of Xanthomonas campestris pv. vesicatoria. Biol. Control 41: 199-206   DOI   ScienceOn
15 Raaijmakers, J. M., Weller, D. M. and Thomashow, L.S. 1997. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881-887
16 Ciampi-Panno, L., Fernandez, C., Bustamante, P., Andrade, N., Ojeda, S. and Conteras, A. 1989. Biological control of bacterial wilt of potatoes caused by Pseudomonas solanacearum. Am. Potato. J. 66: 315-332   DOI
17 Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Ann. Rev. Phytopathol. 29: 65-87   DOI   ScienceOn
18 Guo, J. H., Qi, H. Y., Guo, Y. H., Ge, H. L., Gong, L. Y., Zhang, L. X. and Sun, P. H. 2004. Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol. Control 29: 66-72   DOI   ScienceOn
19 Widmer, F., Seidler, R. J., Gillevet, P. M., Watrud, L. S. and Di Giovanni, G. D. 1998. A highly selective PCR protocol for detection 16S rRNA genes of the genus Pseudomonas (Sensu Stricto) in environmental samples. Appl. Environ. Microbiol. 64: 2545-2553