Browse > Article

Production of Antimicrobial Compounds and Cloning of a dctA Gene Related Uptake of Organic Acids from a Biocontrol Bacterium Pseudomonas Chlororaphis O6  

Han, Song-Hee (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University)
Nam, Hyo-Song (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University)
Kang, Beom-Ryong (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University)
Kim, Kil-Yong (Division of Applied Bioscience and Biotechnology, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University)
Koo, Bon-Sung (National Institute of Agricultural Biotechnology, Rural Development Administration)
Cho, Baik-Ho (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University)
Kim, Young-Cheol (Division of Applied Plant Science, Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.36, no.3, 2003 , pp. 134-144 More about this Journal
Abstract
A rhizobacterium Pseudomonas cholororaphis O6 produced several secondary metabolites, such as phenazines, protease, and HCN that may be involved in inhibition of the growth of phytopathogenic fungi. In field study, P. chlororaphis O6 treatment on wheat seed suppressed root rot disease caused by Fusarium culmorum. The major organic acids of cucumber root exudates were fumaric acid, malic acid, benzoic acid, and succinic acid. Glucose and fructose were major monosaccharides in cucumber root exudates. The total amount of organic acids was ten times higher than that of the sugars. P. chlororaphis O6 grew well on cucumber root exudates. The dctA gene of P. chlororaphis O6 consisted of a 1,335 bp open reading frame with a deduced amino acid sequence of 444 residues, corresponding to a molecular size of about 47 kD and pI 8.2. The deduced dctA sequence has ten putative transmembrane domains, as expected of a membrane-embedded protein. Our results indicated that organic acids in cucumber root exudates may play an important role in providing nutrient source for root colonization of biological control bacteria, and the dctA gene of P. chlororaphis O6 may be an important bacterial trait that is involved in utilization of root exudates.
Keywords
Cucumber root exudates; Biological control; Dicarboxylate transporter; Antimicrobial compounds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gamliel, A., and J. Katan. 1992. Influence of seed and rootexudates on fluorescent pseudomonads and fungi insolarized soil. Phytopathol. 82:320-327   DOI
2 Giblin, L., B. Boesten, S. Turk, P. Hooykaas, and F.O'Gara. 1995. Signal transduction in the Rhizobiummelilotti dicarboxylic acid transport system. FEMSMicrobiol. 126:25-30
3 Mozafar, A., F. Duss, and J.J. Oertli. 1992. Effect ofPseudomonas fluorescenson the root exudates of twotomato mutants differently sensitive to Fe chlorosis. PlantSoil 144:167-176
4 Pierson III, L.S., and L.S. Thomashow, 1992. Cloning andheterologus expression of the phenazine biosyntheticlocus from Pseudomonas aureofaciens 30-84. Mol. PlantMicrobe In. 5:330-339
5 Reddi, T.K.K., Y.P. Khudyakov, and A.V. Borovkov,1969. Pseudomonas fluorescens strain 26-0, a producerof phytotoxic substances. Microbiol. 38:909-913
6 Wiese, M.V. 1977. Compendium of wheat diseases, the American Phytopathological Society, St. Paul.
7 Yoshikawa, M., N. Mirai, K. Wakabayashi, H. Sugikakiand H. Iwamura. 1993. Succinic acid and lactic acids asplant growth promoting compounds produced byrhizosphere Pseudomonas putida. Can. J. Microbiol39:1150-1154
8 Kloepper, J.W., J. Leong, M. Teintze, and M.N. Schroth.1980. Enhanced plant growth by siderophores producedby plant growth-promoting rhizobacteria. Nature286:885-886   DOI
9 Ausubel, F.M., R. Brent, R. E. Kingston, D.D. Moore, J. G.Seidman, J. A. Smith, and K. Struhl. 1989. Current protocols in Molecular Biology, John Wiley Sons NewYork
10 Liddell,C.M. 1985. The comparative pathogenicity of Fusarium gramineraum group I, Fusarium culmorumand Fusarium crookwellnese as crown, foot and root ropathogens of wheat. Australas. Plant Path. 14:29-32   DOI
11 O'Sullivan, D.J., and F. O'Gara, 1992. Traits of fluorescentPseudomonas spp. involved in suppression of plant rootpathogens. Microbiol. Rev. 56:662-676
12 Alstrom, S. and R.G. Burns. 1989. Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fert. Soils 7:232-238   DOI
13 Defago, G., C.H. Berling, 0. Burger, D. Hass, G. Kahr, CKeel, C. Voisard, P. Wirthner, and B. Wutrich. 1990 Suppression of black root rot of tobacco and other root disease by strains of Pseduomonas fluorescens; potential applications and mechanisms. D. Hornby, ed. CABInternational, Walling Ford, U. K.
14 Thomashow, L.S., and D.M. Weller, 1988. Role of a phenazine antibiotic from Pseudomonas fIuorescens in biological control of Gaeumannomyces eraminis vartridci. J. Bactehol. 170:3499-3508.
15 Lugtenberg, B.J.J., L. Dekkers, and G.V. Bloemberg. 2001 Molecular determinants of rhizosphre colonization by pseudomonas. Annu. Rev. Phytopathol. 39:461-490   DOI   ScienceOn
16 Johnson, J.F., C.P. Vance, and D.L. Allan. 1996.Phophorus deficiency in Lupinus albus, altered lateralroot development and enhanced expression ofphosphoenolpyruvate carboxylase. Plant Physiol. 112:3141
17 Kropp, B.R., E. Thomas, J.I. Pounder, and A.J. Anderson.1996. Increased emergence of spring wheat after inoculation with Pseudomonas chlororaphis isolate 2E3under field and laboratory condidons. Biol. Pertil. Soils23:200-206   DOI   ScienceOn
18 Delaney, S.M., D.V. Mavrol, R.F. Bonsall, and L.SThomashow. 2000. phzO, a gene for biosynthesis of 2-hydroxylated phenazine compounds in Pseudomonas aureofaciens 30-84. J. Bactenol. 183:318-327
19 Simons, M., H.P. Permentier, L.A. de Weger, C.A.Wijffelman, and B.J.J. Lugtenberg. 1997. Amino acidsynthesis is necessary for tomato root colonization by Pseudomonas fluorescens strain WCS365. Mol. PlantMiciobe In. 10:102-106
20 Lugtenberg, B.J., L.V. Kravchenko, and M. Simons. 1990.Tomato and root exudate sugars: composition, utilizationby Pseudomonas biocontrol strains and role inrhizosphere colonization. Environ. Microbiol. 1:439-446   DOI   ScienceOn
21 Sambrook, J., E.F Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor,New York.
22 Stowers, M.D. 1985. Carbon metabolism in Rhizobiumspecies. Ann. Rev. Microbiol. 39:89-108   DOI   PUBMED   ScienceOn
23 El-Hamalawi, Z.A., and D.C. Erwin. 1986. Components inalfalfa root extract and root exudates that increaseoospore germination of Phytophthora megasperma f. sp.medicaginis. Phytopathol. 96:508-513
24 Vilchez, S., I. Molina, C. Ramos, and J.L. Ramos. 2000.Proline catabolism by Pseudomonas putida: cloning,characterization, and expression of the put genes in thepresence of root exudates. J. Bacteriol. 182:91-99   DOI   ScienceOn
25 Chaboud, A. 1983. Isolation, Purification, and chemicalcomposition of maize root cap slime. Plant Soil 73:395-402   DOI