• Title/Summary/Keyword: physical faults

Search Result 80, Processing Time 0.022 seconds

Securing Safety in Collaborative Cyber-Physical Systems Through Fault Criticality Analysis (협업 사이버물리시스템의 결함 치명도 분석을 통한 안전성 확보)

  • Hussain, Manzoor;Ali, Nazakat;Hong, Jang-Eui
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.287-300
    • /
    • 2021
  • Collaborative Cyber-Physical Systems (CCPS) are those systems that contain tightly coupled physical and cyber components, massively interconnected subsystems, and collaborate to achieve a common goal. The safety of a single Cyber-Physical System (CPS) can be achieved by following the safety standards such as ISO 26262 and IEC 61508 or by applying hazard analysis techniques. However, due to the complex, highly interconnected, heterogeneous, and collaborative nature of CCPS, a fault in one CPS's components can trigger many other faults in other collaborating CPSs. Therefore, a safety assurance technique based on fault criticality analysis would require to ensure safety in CCPS. This paper presents a Fault Criticality Matrix (FCM) implemented in our tool called CPSTracer, which contains several data such as identified fault, fault criticality, safety guard, etc. The proposed FCM is based on composite hazard analysis and content-based relationships among the hazard analysis artifacts, and ensures that the safety guard controls the identified faults at design time; thus, we can effectively manage and control the fault at the design phase to ensure the safe development of CPSs. To justify our approach, we introduce a case study on the Platooning system (a collaborative CPS). We perform the criticality analysis of the Platooning system using FCM in our developed tool. After the detailed fault criticality analysis, we investigate the results to check the appropriateness and effectiveness with two research questions. Also, by performing simulation for the Platooning, we showed that the rate of collision of the Platooning system without using FCM was quite high as compared to the rate of collisions of the system after analyzing the fault criticality using FCM.

Approximate Lost Data Recovery Scheme for Data Centric Storage Environments in Wireless Sensor Networks (무선 센서 네트워크 데이터 중심 저장 환경을 위한 소실 데이터 근사 복구 기법)

  • Seong, Dong-Ook;Park, Jun-Ho;Hong, Seung-Wan;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.7
    • /
    • pp.21-28
    • /
    • 2012
  • The data centric storage (DCS) scheme is one of representative methods to efficiently store and maintain data generated in wireless sensor networks. In the DCS schemes, each node has the specified data range for storing data. This feature is highly vulnerable to the faults of nodes. In this paper, we propose a new recovery scheme for the lost data caused by the faults of nodes in DCS environments. The proposed scheme improves the accuracy of query results by recovering the lost data using the spatial continuity of physical data. To show the superiority of our proposed scheme, we simulate it in the DCS environments with the faults of nodes. In the result, our proposed scheme improves the accuracy by about 28% through about 2.5% additional energy consumption over the existing scheme.

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.

Optimal Parameter Selection by Health Monitoring of Gas Turbine Engines using Gas Path Analysis (GPA를 이용한 가스터빈 엔진의 성능진단에 의한 최적 계측변수 선정에 관한 연구)

  • ;Riti Singh
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.1
    • /
    • pp.24-33
    • /
    • 1999
  • For performance prediction and diagnostics of gas turbine engines, linear and non-linear gas path analysis are applied. In order to find optimal instrument parameters to detect the physical faults such as (outing, erosion and corrosion, non-linear gas path analysis is used. A typical industrial gas turbine engine, TB5000, is used to study the effect of physical faults on engine performance. Through comparison of RMS error between linear and non-linear gas path analysis, the optimal instrument parameters can be defined. As a result, it is found that the linear GPA has the level of error introduced by the assumption of the linear mode: can be of the same order of magnitude as the fault being soughtwhile the non-linear GPA can be solved the non-linear relationships between dependent and independent parameters using an iterative method such as the Newton-Raphson method with sufficient accuracy.

  • PDF

An Efficient Hybrid Diagnosis Algorithm for Sequential Circuits (순차 회로를 위한 효율적인 혼합 고장 진단 알고리듬)

  • 김지혜;이주환;강성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.51-60
    • /
    • 2004
  • Due to the improvements in circuit design and manufacturing technique, the complexity of a circuit is growing. Since the complexity of a circuit causes high frequency of faults, it is very important to locate faults for improvement of yield and reduction of production cost. But unfortunately it takes a long time to find sites of defects by e-beam proving if the physical level. A fault diagnosis algorithm in the Sate level has meaning to reduce diagnosis time by limiting fault sites. In this paper, we propose an efficient fault diagnosis algorithm in the logical level. Our method is hybrid fault diagnosis algorithm using a new fault dictionary and additional fault simulation which minimizes memory consumption and simulation time.

An Efficient DSA Signature Scheme Resistant to the Fault Analysis Attack (오류 분석 공격에 대응하는 효율적인 DSA 서명 기법)

  • Bae, Ki-Seok;Baek, Yi-Roo;Moon, Sang-Jae;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.5
    • /
    • pp.49-57
    • /
    • 2010
  • The fault cryptanalysis is a physical attack in which the key stored inside of the device can be extracted by occurring some faults when the device performs cryptographic algorithm. Since the international signature standard DSA(Digital Signature Algorithm) was known to be vulnerable to some fault analysis attacks, many researchers have been investigating the countermeasure to prevent these attacks. In this paper we propose a new countermeasure to compute DSA signature that has its immunity in the presence of faults. Since additional computational overhead of our proposal is only an inverse operation in signature process, the proposed DSA scheme can be implemented more efficiently compared to previous countermeasures.

Optical Wireless Access Point Agent Networks

  • Lee, Tae-Gyu
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.98-106
    • /
    • 2009
  • This paper proposes an optical wireless transfer agent method which realizes the continuous and swift data transfer of optical wireless terminals in optical wireless networks. The unguided wireless channel generally shows frequent link disconnections and propagation delays due to weak wireless links. Specially speaking, optical wireless channels have more vulnerable links and roaming propagation delays relative to the weakness of the previous RF channels due to their low signal connectivity and small geographic coverage. Conventional optical wireless network protocols did not consider any fault models about physical link faults. Consequently, they have shown data transfer inefficiency for both data link control and physical wireless link control. To overcome these optical wireless environmental problems, this paper suggests a new wireless access point (or base station) agent system, which provides wireless or mobile clients with previous link layer protocols compensated.

A Study on Mineralogical and Basic Mechanical Properties of Fault Gouges in 16 Faults, Korea (국내 16개 단층대 단층비지의 광물학적 및 기초물성에 관한 연구)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Choo, Chang Oh;Kim, Woo-Seok;Seo, Yong-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.109-126
    • /
    • 2015
  • Because fault gouge developed at the center of fault is recognized as one of the most important weak sites, it is evident that clay mineralogy and physical properties greatly affect the rock stability. The purpose of this study is to establish the relationship of mineralogy and physical factors that control rock stability in fault zones. We analyzed a total of 51 samples from 16 main faults which were selected from a Korea fracture map, using XRD, SEM, and physical analyses like unit weight, friction and cohesion properties. Though it is considered that the most common clay minerals comprising fault gouge are kaolinite, illite and smectite, clay mineralogy slightly varies depending on lithology: illite > smectite > kaolinite and chlorite in volcanic rocks, kaolinite and chlorite > illite > smectite in sedimentary rocks, and illite > smectite > kaolinite and chlorite in abundance, respectively. Friction angle decreases with increasing clay content. Cohesion increases with increasing clay content below the 45 % region while it decreases with increasing clay content at the region higher than 45%, with some scatters in the data. It is likely that these results are ascribed to the physical heterogeneity of fault gouges with varying content of different clay minerals.

Controllability of Structural, Optical and Electrical Properties of Ga doped ZnO Nanowires Synthesized by Physical Vapor Deposition

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.148-151
    • /
    • 2013
  • The control of Ga doping in ZnO nanowires (NWs) by physical vapor deposition has been implemented and characterized. Various Ga-doped ZnO NWs were grown using the vapor-liquid-solid (VLS) method, with Au catalyst on c-plane sapphire substrate by hot-walled pulsed laser deposition (HW-PLD), one of the physical vapor deposition methods. The structural, optical and electrical properties of Ga-doped ZnO NWs have been systematically analyzed, by changing Ga concentration in ZnO NWs. We observed stacking faults and different crystalline directions caused by increasing Ga concentration in ZnO NWs, using SEM and HR-TEM. A $D^0X$ peak in the PL spectra of Ga doped ZnO NWs that is sharper than that of pure ZnO NWs has been clearly observed, which indicated the substitution of Ga for Zn. The electrical properties of controlled Ga-doped ZnO NWs have been measured, and show that the conductance of ZnO NWs increased up to 3 wt% Ga doping. However, the conductance of 5 wt% Ga doped ZnO NWs decreased, because the mean free path was decreased, according to the increase of carrier concentration. This control of the structural, optical and electrical properties of ZnO NWs by doping, could provide the possibility of the fabrication of various nanowire based electronic devices, such as nano-FETs, nano-inverters, nano-logic circuits and customized nano-sensors.

Surface geophysical surveys the northern part of the Yongdong basin (Cretaceous), Korea (영동분지(백악기) 북부 지역에 대한 지표물리탐사)

  • Kim, Ji-Su;Han, Soo-Hyung;Rhee, Cheol-U;Kim, Bok-Cheol;Ryang, U-Heon
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.329-336
    • /
    • 2002
  • Electrical resistivity dipole-dipole, seismic refraction, and seismic reflection methods were performed to delineate the boundaries the Yongdong basin(Cretaceous) in terms of physical properties and to ultimately identify the margin architectures of the faults or unconformities. Higer resistivities (approximately >2000 ohm-m) most likely originate from the basement of the basin, contrasting with the lower resistivities from infilled sedimentary rocks. Faults at the eastern margin and unconformities at the western boundary are characterized as high-slope($70^{\circ}$) and gentle-slope($30^{\circ}$) gradients in the resistivity sections, respectively Such features for the boundaries are also suggested by the lower values of seismic velocity and resistivity for the western margin.

  • PDF