DOI QR코드

DOI QR Code

A Study on Mineralogical and Basic Mechanical Properties of Fault Gouges in 16 Faults, Korea

국내 16개 단층대 단층비지의 광물학적 및 기초물성에 관한 연구

  • Moon, Seong-Woo (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Yun, Hyun-Seok (Department of Earth and Environmental Sciences, Chungbuk National University) ;
  • Choo, Chang Oh (Department of Geology) ;
  • Kim, Woo-Seok (Geotechnical Engineering Research Division) ;
  • Seo, Yong-Seok (Department of Earth and Environmental Sciences, Chungbuk National University)
  • 문성우 (충북대학교 지구환경과학과) ;
  • 윤현석 (충북대학교 지구환경과학과) ;
  • 추창오 (경북대학교 지질학과) ;
  • 김우석 (한국건설기술연구원 지반연구소) ;
  • 서용석 (충북대학교 지구환경과학과)
  • Received : 2015.06.04
  • Accepted : 2015.06.26
  • Published : 2015.06.30

Abstract

Because fault gouge developed at the center of fault is recognized as one of the most important weak sites, it is evident that clay mineralogy and physical properties greatly affect the rock stability. The purpose of this study is to establish the relationship of mineralogy and physical factors that control rock stability in fault zones. We analyzed a total of 51 samples from 16 main faults which were selected from a Korea fracture map, using XRD, SEM, and physical analyses like unit weight, friction and cohesion properties. Though it is considered that the most common clay minerals comprising fault gouge are kaolinite, illite and smectite, clay mineralogy slightly varies depending on lithology: illite > smectite > kaolinite and chlorite in volcanic rocks, kaolinite and chlorite > illite > smectite in sedimentary rocks, and illite > smectite > kaolinite and chlorite in abundance, respectively. Friction angle decreases with increasing clay content. Cohesion increases with increasing clay content below the 45 % region while it decreases with increasing clay content at the region higher than 45%, with some scatters in the data. It is likely that these results are ascribed to the physical heterogeneity of fault gouges with varying content of different clay minerals.

단층비지는 단층의 중심부에 분포하면서 연약대를 형성하므로 단층비지의 광물학적 특성과 물성은 암반의 안정성에 크게 영향을 미친다. 본 연구에서는 단열구조도를 참고하여 중, 대규모의 주요 단층을 선정하였으며, 총 16지역의 단층 코어부분에서 51종류의 시료를 채취하였다. XRD, SEM을 이용한 광물학적 분석과 단위중량, 마찰각, 점착력을 측정하였다. 점토광물은 대표적으로 카올리나이트, 일라이트, 스멕타이트로 나눠질 수 있으며, 화산암에는 일라이트 > 스멕타이트 > 카올리나이트와 녹니석의 순으로 함유된다. 퇴적암에는 카올리나이트와 녹니석 > 일라이트 > 스멕타이트의 순으로 풍부하다. 화강암에는 일라이트 > 스멕타이트 > 카올리나이트와 녹니석 순으로 함유된다. 마찰각은 점토함량이 높을수록 감소하며, 점착력은 분산이 심하게 나타났다. 점토광물의 함량이 45% 이하에서는 점토광물의 함량이 증가할수록 점착력이 높아지나 45% 이상에서는 점착력이 낮아지는 추세를 보인다. 이는 단층비지가 불균질하며, 점토광물의 종류와 함량에서도 넓은 범위를 가지기 때문인 것으로 보인다.

Keywords

References

  1. Bense, F.A., Wemmer, K., Lobens, S., and Siegesmund, S. (2014) Fault gouge analyses: K-Ar illite dating, clay mineralogy and tectonic significance-a study from the Sierras Pampeanas, Argentina. International Journal of Earth Sciences, 103, 189-218. https://doi.org/10.1007/s00531-013-0956-7
  2. Caine, J.S., Bruhn, R.L., and Forster, C.B. (2010) Internal structure, fault rocks, and inferences regarding deformation, fluid flow, and mineralization in the seismogenic Stillwater normal fault, Dixie Valley, Nevada. Journal of Structural Geology 32, 1576-1589. https://doi.org/10.1016/j.jsg.2010.03.004
  3. Caine, J.S., Evans, J.P., and Forster, C.B. (1996) Fault zone architecture and permeability structure. Geology, 24, 1025-1028. https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2
  4. Chang, T.W. and Choo, C.O. (1998) Formation processes of fault gouges and their K-Ar ages along the Dongrae fault. The Journal of Engineering Geology, 8, 175-188 (in Korean with English abstract).
  5. Chang, T.W. and Choo, C.O. (1999) Faulting processes and K-Ar ages of fault gouges in the Yangsan fault zone. Journal of Korean Earth Science Society, 20, 25-37 (in Korean with English abstract).
  6. Chang, T.W., Kim, C.S., and Bae, D.S. (2003) Characteristics of fracture systems in southern Korea. The Journal of Engineering Geology, 13, 207-225 (in Korean with English abstract).
  7. Chester, F.M. and Logan, J.M. (1986) Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure and Applied Geophysics, 124, 79-106. https://doi.org/10.1007/BF00875720
  8. Chester, F.H., Evans, J.P., and Biegel, R.L., (1993) Internal structure and weakening mechanisms of the San Andreas Fault. Journal of Geophysical Research, 98, 77, 1-786.
  9. Choo, C.O. and Chang, T.W. (2000) Characteristics of clay minerals in gouges of the Dongrae Fault, Southeastern Korea, and implications for fault activity. Clays and Clay Minerals, 48, 204-212. https://doi.org/10.1346/CCMN.2000.0480206
  10. Faulkner, D.R. (2004) A model for the variation in permeability of clay-bearing fault gouge with depth in the brittle crust. Geophysical Research Letters, 31, L19611, doi:10.1029/2004GL020736.
  11. Faulkner, D.R. and Rutter, E. H. (2001) Can the maintenance of overpressured fluids in large strike-slip fault zones explain their apparent weakness? Geology, 29, 503-506. https://doi.org/10.1130/0091-7613(2001)029<0503:CTMOOF>2.0.CO;2
  12. Holdsworth, R.E., van Diggelen, E.W.E., Spiers, C.J., de Bresser, J.H.P., Walker, R.J., and Bowen, L. (2011) Fault rocks from the SAFOD core samples: Implications for weakening at shallow depths along the San Andreas Fault, California. Journal of Structural Geology, 33, 132-144. https://doi.org/10.1016/j.jsg.2010.11.010
  13. Kuo, L.-K., Song, S.-R., Yeh, E.-C., Chen, H.-F., and Si, J. (2012) Clay mineralogy and geochemistry investigations in the host rocks of the Chelungpu fault, Taiwan: Implication for faulting mechanism. Journal of Asian Earth Sciences, 59, 208-218. https://doi.org/10.1016/j.jseaes.2012.07.009
  14. Lee, C.S. and Lee, H. (2009) Hydrothermal alteration and engineering characteristics in the Bokan tunnel area passing through the Yangsan Fault. Journal of Mineralogical Society of Korea, 22, 13-22 (in Korean with English abstract).
  15. Lee, K.M., Lee, S.H., Seo, Y.S., Kim, C.Y., and Kim, K.Y. (2007) Petro-mineralogical and mechanical property of fault material in phyllitic rock tunnel. The Journal of Engineering Geology, 17, 339-350 (in Korean with English abstract).
  16. Moon, S.W., Yun, H.S., Kim, W.S., Na, J.H., Kim, C.Y., and Seo, Y.S. (2014) Correlation Analysis between Weight Ratio and Shear Strength of Fault Materials using Multiple Regression Analysis. The Journal of Engineering Geology, 24, 397-409 (in Korean with English abstract). https://doi.org/10.9720/kseg.2014.3.397
  17. Offler, R., Och, D.J., Phelan, D., and Zwingmann, H. (2009) Mineralogy of gouge in north-northeaststriking faults, Sydney region, New South Wales. Australian Journal of Earth Sciences, 56, 889-905. https://doi.org/10.1080/08120090903005352
  18. Olson, R.E. (1974) Shearing strength of kaolinite, illite and montmorillonite. Journal of the Geotechnical Division, ASCE, 100, GT11, 1215-1299.
  19. Rutter, E.H., Maddock, R.H., Hall, S.H., and White, S.H. (1986) Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure and Applied Geophysics, 124, 3-29. https://doi.org/10.1007/BF00875717
  20. Sibson, R.H. (1977) Fault rocks and fault mechanisms. Journal of Geological Society of London, 133, 191-213. https://doi.org/10.1144/gsjgs.133.3.0191
  21. Sibson, R.H. (1986) Brecciation processes in fault zone: Inferences from earthquake rupturing. Pure and Applied Geophysics, 124, 159-175. https://doi.org/10.1007/BF00875724
  22. Solum, J.G., van der Pluijm, B.A., and Peacor, D.R., and Warr, L.N. (2003) Influence of phyllosilicate mineral assemblages, fabrics, and fluids on the behavior of the Punchbowl fault, southern California. Journal of Geophysical Research, 108, B5, 2233, doi:10.1029/2002JB001858.
  23. Solum, J.G. and van der Pluijm, B.A. (2004) Phyllosilicate mineral assemblages of the SAFOD pilot hole and comparison with an exhumed segment of the San Andreas Fault system. Geophysical Research Letters, 31, L15S19.
  24. Song, S.J., Choo, C.O., Chang, C.J., Chang, T.W., and Jang, Y.D. (2012) Mineral composition and grain size distribution of fault rock from Yangbuk-myeon, Gyeongju City, Korea. Economic and Environmental Geology, 45, 487-502 (in Korean with English abstract). https://doi.org/10.9719/EEG.2012.45.5.487
  25. Song, Y. Chung, D., Choi, S.-J. Kang, I.-M., Park, C., Itaya, T., and Yi, K. (2014) K-Ar illite dating to constrain multiple events in shallow crustal rocks: Implications for the Late Phanerozoic evolution of NE Asia. Journal of Asian Earth Sciences, 95, 313-322. https://doi.org/10.1016/j.jseaes.2014.05.018
  26. Tembe, S., Lockner, D.A., and Teng-Fong Wong, T.-F. (2010) Effect of clay content and mineralogy on frictional sliding behavior of simulated gouges: Binary and ternary mixtures of quartz, illite, and montmorillonite. Journal of Geophysical Research, 115, B03416, doi:10.1029/2009JB006383.
  27. Torgersen, E., Viola, G., Zwingmann, H., and Henderson, I.H.C. (2014) Inclined K-Ar illite age spectra in brittle fault gouges: effects of fault reactivation and wall-rock contamination. Terra Nova, doi: 10.1111/ter.12136.
  28. van der Pluijm, B.A. and Marshak, S. (2004) Earth Structure: An Introduction to structural geology and tectonics. W.W. Norton and Company. p656.
  29. Woodcock, N.H. and Mort, K. (2008) Classification of fault breccias and related fault rocks, Geological Magazine, 145, 435-440.
  30. Wu, F.T. (1978) Mineralogy and physical nature of clay gouge. Pure and Applied Geophysics, 116, 655-688. https://doi.org/10.1007/BF00876531

Cited by

  1. Characteristics of Sedimented Sandy in Nackdong River Delta vol.15, pp.2, 2016, https://doi.org/10.12814/jkgss.2016.15.2.025
  2. Case Study on Slope Stability Changes Caused by Earthquakes—Focusing on Gyeongju 5.8 ML EQ vol.10, pp.10, 2018, https://doi.org/10.3390/su10103441
  3. 시추코어 단층대에서의 지질공학적 의미: 슈도타킬라이트의 미세조직의 특징과 지진활동 vol.27, pp.4, 2015, https://doi.org/10.9720/kseg.2017.4.489