• Title/Summary/Keyword: photon localization

Search Result 19, Processing Time 0.022 seconds

Theoretical analysis of the lightwave localization phenomenon on the random transmission line (part 2) : simulation (랜덤 선로상의 광 국재현상에 관한 해석(2) : 시뮬레이션)

  • 최영규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.434-442
    • /
    • 2003
  • Taking advantage of the probability function, we have analyzed the localization phenomenon of the solution of a propagating function under the condition that the propagation constants are randomly distributed. For example, we have investigated the localization phenomenon of the voltage wave for a transmission line in which the characteristic impedance is randomly distributed. We have confirmed that the localized solution is in existence on the random lossless transmission line. Even in the case that the voltage wave is impulsively excited by the current source, the voltage wave is localized. Because the light wave is seriously affected at the localized position in the lossy transmission line, we have determined that the light wave localization phenomena are generated by multi-reflection.

Nuclear Imaging in Epilepsy (간질에서의 핵의학 영상)

  • Chun, Kyung-Ah
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • Correct localization of epileptogenic zone is important for the successful epilepsy surgery. Both ictal perfusion single photon emission computed tomography (SPECT) and interictal F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information in the presurgical localization of intractable partial epilepsy. These imaging modalities have excellent diagnostic sensitivity in medial temporal lobe epilepsy and provide good presurgical information in neocortical epilepsy. Also provide functional information about cellular functions to better understand the neurobiology of epilepsy and to better define the ictal onset zone, symptomatogenic zone, propagation pathways, functional deficit zone and surround inhibition zones. Multimodality imaging and developments in analysis methods of ictal perfusion SPECT and new PET ligand other than FDG help to better define the localization.

Theoretical analysis of the lightwave localization phenomenon on the random transmission line (part 1) : localization characteristics of the solution of propagation equation (랜덤 선로상의 광 국재현상에 관한 해석(1) : 해의 국재성에 대한 이론적 고찰)

  • 최영규
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.4
    • /
    • pp.429-433
    • /
    • 2003
  • We try to analyse the localization phenomenon of a lightwave in random media by means of considering the solution of the propagation equation on a transmission line in which the propagation constants are randomly distributed. Lightwave localization is generated at the turning point where the solution is changed suddenly from an increase to a decrease. First, in order to investigate the changing process of the solution, we have derived the approximated one-dimensional Schrodinger equation from the two-dimensional wave equation by using the Brags condition. Considering the many types of solutions of the wave equation, we have investigated the conditions that allow the solutions to exist. Also, we have investigated the relationships between the localization of the solution and the variation of the propagation constant. In case of the exponential solution, we know that the permittivity $\varepsilon$=(0,0$\varepsilon$$_{0}$) is a very important parameter to influence the phase of the lightwave and to generate the localization.

Multimodal neuroimaging in presurgical evaluation of childhood epilepsy

  • Jung, Da-Eun;Lee, Joon-Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.53 no.8
    • /
    • pp.779-785
    • /
    • 2010
  • In pre-surgical evaluation of pediatric epilepsy, the combined use of multiple imaging modalities for precise localization of the epileptogenic focus is a worthwhile endeavor. Advanced neuroimaging by high field Magnetic resonance imaging (MRI), diffusion tensor images, and MR spectroscopy have the potential to identify subtle lesions. $^{18}F$-FDG positron emission tomography and single photon emission tomography provide visualization of metabolic alterations of the brain in the ictal and interictal states. These techniques may have localizing value for patients which exhibit normal MRI scans. Functional MRI is helpful for non-invasively identifying areas of eloquent cortex. These advances are improving our ability to noninvasively detect epileptogenic foci which have gone undetected in the past and whose accurate localization is crucial for a favorable outcome following surgical resection.

A Study on MTL Device Design and Motion Tracking in Virtual Reality Environments

  • Oh, Am-Suk
    • Journal of information and communication convergence engineering
    • /
    • v.17 no.3
    • /
    • pp.205-212
    • /
    • 2019
  • Motion tracking and localization devices are an important building block of motion tracking systems in a virtual reality (VR) environment. This study is about improving the accuracy of motion and location for enhancing user immersion in experience type VR environment to position tracking technique. In this study, we propose and test a design of such a device. The module data test of the attitude and heading reference system shows that the implementation with the MPU-9250 sensor is successful and adequate to be used with short operation time. We consider various sensor hardware dependencies of VR, and compare various correction methods and filtering methods to lower the motion to photon (MTP) time that user movement is fully reflected on the display using sensor devices. The Kalman filter is used to combine the accelerometer with the gyroscope in the sensing unit.

Functional Neuroimaging in Epilepsy: FDG-PET and SPECT (간질에서의 기능적 뇌영상:양전자방출단층촬영과 단일광전자방출 단층촬영)

  • Lee, Sang-Kun;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.1
    • /
    • pp.24-33
    • /
    • 2003
  • Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. Ictal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test.

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • Progress in Medical Physics
    • /
    • v.32 no.1
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

Stereotactic Radiosurgery for Recurrent Glioblastoma Multiforme using Yeungnam Localization Device - Technical note and Clinical trial - (뇌정위적 방사선 절제술에 필요한 위치선정용기구 제작과 치험 2예)

  • Shin, Sei-One;Kim, Sung-Kyu;Kim, Myung-Se;Kim, Oh-Lyong;Cho, Soo-Ho
    • Radiation Oncology Journal
    • /
    • v.10 no.1
    • /
    • pp.101-105
    • /
    • 1992
  • Authors performed a stereotactic radiosurgery with multiple noncoplanar convergent photon beams of linear accelerator (NELAC-1018 18 MeV, NEC) using a specially designed Yeungnam localization device for two patients with recurrent glioblastoma multiforme. One patient had 2 cm sized and the other 4 cm sized mass on the CT images. After single session of treatment with 15 and 20 Gy, headache was improved in a few days after radiosurgery with no remarkable untoward reactions. Our experience with these two patients were encouraging and we found that our localization device, which is easily adjustable and inexpensive, could be a valuable tool for stereotactic radiosurgery particularly in the treatment of recurrent brain tumor.

  • PDF

Three-Dimensional Approaches in Histopathological Tissue Clearing System (조직투명화 기술을 통한 3차원적 접근)

  • Lee, Tae Bok;Lee, Jaewang;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.52 no.1
    • /
    • pp.1-17
    • /
    • 2020
  • Three-dimensional microscopic approaches in histopathology display multiplex properties that present puzzling questions for specimens as related to their comprehensive volumetric information. This information includes spatial distribution of molecules, three-dimensional co-localization, structural formation and whole data set that cannot be determined by two-dimensional section slides due to the inevitable loss of spatial information. Advancement of optical instruments such as two-photon microscopy and high performance objectives with motorized correction collars have narrowed the gap between optical theories and the actual reality of deep tissue imaging. However, the benefits gained by a prolonged working distance, two-photon laser and optimized beam alignment are inevitably diminished because of the light scattering phenomenon that is deeply related to the refractive index mismatch between each cellular component and the surrounding medium. From the first approaches with simple crude refractive index matching techniques to the recent cutting-edge integrated tissue clearing methods, an achievement of transparency without morphological denaturation and eradication of natural and fixation-induced nonspecific autofluorescence out of real signal are key factors to determine the perfection of tissue clearing and the immunofluorescent staining for high contrast images. When performing integrated laboratory workflow of tissue for processing frozen and formalin-fixed tissues, clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in situ hybridization-compatible tissue hydrogel (CLARITY), an equipment-based tissue clearing method, is compatible with routine procedures in a histopathology laboratory.

Advanced neuroimaging techniques for evaluating pediatric epilepsy

  • Lee, Yun Jeong
    • Clinical and Experimental Pediatrics
    • /
    • v.63 no.3
    • /
    • pp.88-95
    • /
    • 2020
  • Accurate localization of the seizure onset zone is important for better seizure outcomes and preventing deficits following epilepsy surgery. Recent advances in neuroimaging techniques have increased our understanding of the underlying etiology and improved our ability to noninvasively identify the seizure onset zone. Using epilepsy-specific magnetic resonance imaging (MRI) protocols, structural MRI allows better detection of the seizure onset zone, particularly when it is interpreted by experienced neuroradiologists. Ultra-high-field imaging and postprocessing analysis with automated machine learning algorithms can detect subtle structural abnormalities in MRI-negative patients. Tractography derived from diffusion tensor imaging can delineate white matter connections associated with epilepsy or eloquent function, thus, preventing deficits after epilepsy surgery. Arterial spin-labeling perfusion MRI, simultaneous electroencephalography (EEG)-functional MRI (fMRI), and magnetoencephalography (MEG) are noinvasive imaging modalities that can be used to localize the epileptogenic foci and assist in planning epilepsy surgery with positron emission tomography, ictal single-photon emission computed tomography, and intracranial EEG monitoring. MEG and fMRI can localize and lateralize the area of the cortex that is essential for language, motor, and memory function and identify its relationship with planned surgical resection sites to reduce the risk of neurological impairments. These advanced structural and functional imaging modalities can be combined with postprocessing methods to better understand the epileptic network and obtain valuable clinical information for predicting long-term outcomes in pediatric epilepsy.