Browse > Article
http://dx.doi.org/10.15324/kjcls.2020.52.1.1

Three-Dimensional Approaches in Histopathological Tissue Clearing System  

Lee, Tae Bok (Confocal Core Facility, Center for Medical Innovation, Seoul National University Hospital)
Lee, Jaewang (Department of Biomedical Laboratory Science, College of Health Science, Eulji University)
Jun, Jin Hyun (Department of Biomedical Laboratory Science, College of Health Science, Eulji University)
Publication Information
Korean Journal of Clinical Laboratory Science / v.52, no.1, 2020 , pp. 1-17 More about this Journal
Abstract
Three-dimensional microscopic approaches in histopathology display multiplex properties that present puzzling questions for specimens as related to their comprehensive volumetric information. This information includes spatial distribution of molecules, three-dimensional co-localization, structural formation and whole data set that cannot be determined by two-dimensional section slides due to the inevitable loss of spatial information. Advancement of optical instruments such as two-photon microscopy and high performance objectives with motorized correction collars have narrowed the gap between optical theories and the actual reality of deep tissue imaging. However, the benefits gained by a prolonged working distance, two-photon laser and optimized beam alignment are inevitably diminished because of the light scattering phenomenon that is deeply related to the refractive index mismatch between each cellular component and the surrounding medium. From the first approaches with simple crude refractive index matching techniques to the recent cutting-edge integrated tissue clearing methods, an achievement of transparency without morphological denaturation and eradication of natural and fixation-induced nonspecific autofluorescence out of real signal are key factors to determine the perfection of tissue clearing and the immunofluorescent staining for high contrast images. When performing integrated laboratory workflow of tissue for processing frozen and formalin-fixed tissues, clear lipid-exchanged acrylamide-hybridized rigid imaging/immunostaining/in situ hybridization-compatible tissue hydrogel (CLARITY), an equipment-based tissue clearing method, is compatible with routine procedures in a histopathology laboratory.
Keywords
Autofluorescence; CLARITY; Histopathology; Refractive index; Tissue clearing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nojima S, Susaki EA, Yoshida K, Takemoto H, Tsujimura N, Iijima S, et al. CUBIC pathology: three-dimensional imaging for pathological diagnosis. Sci Rep. 2017;7:9269. https://doi.org/10.1038/s41598-017-09117-0   DOI
2 Oliveira VC, Carrara RC, Simoes DL, Saggioro FP, Carlotti CG Jr, Covas DT, et al. Sudan black b treatment reduces autofluorescence and improves resolution of in situ hybridization specific fluorescent signals of brain sections. Histol Histopathol. 2010;25:1017-1024. https://doi.org/10.14670/HH-25.1017
3 Sun Y, Yu H, Zheng D, Cao Q, Wang Y, Harris D, et al. Sudan black B reduces autofluorescence in murine renal tissue. Arch Pathol Lab Med. 2011;135:1335-1342. https://doi.org/10.5858/arpa.2010-0549-OA   DOI
4 Seo J, Choe M, Kim SY. Clearing and labeling techniques for large-scale biological tissues. Mol Cells. 2016;39:439-446. https://doi.org/10.14348/molcells.2016.0088 Erratum in; Erratum to: Clearing and labeling techniques for large-scale biological tissues. Mol Cells. 2016;42:96. https://doi.org/10.14348/molcells.2019.1088   DOI
5 Kolodziejczyk E, Baertschi AJ. Multiple immunolabeling in histology: A new method using thermo-inactivation of immunoglobulins. J Histochem Cytochem. 1986;34:1725-1729. https://doi.org/10.1177/34.12.3023476
6 Wahlby C, Erlandsson F, Bengtsson E, Zetterberg A. Sequential immunofluorescence staining and image analysis for detection of large numbers of antigens in individual cell nuclei. Cytometry. 2002;47:32-41.   DOI
7 Murray E, Cho JH, Goodwin D, Ku T, Swaney J, Kim SY, et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell. 2015;163:1500-1514. https://doi.org/10.1016/j.cell.2015.11.025   DOI
8 Umezawa M, Haruguchi S, Fukushima R, Sekiyama S, Kamimura M, Soga K. Rapid increase in transparency of biological organs by matching refractive index of medium to cell membrane using phosphoric acid. RSC Adv. 2019;9:15269-15276. https://doi.org/10.1039/C9RA01445D
9 Lee E, Sun W. ACT-PRESTO: biological tissue clearing and immunolabeling methods for volume imaging. J Vis Exp. 2016;118:E54904. https://doi.org/10.3791/54904
10 Lee E, Choi J, Jo Y, Kim JY, Jang YJ, Lee HM, et al. ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3d) imaging. Sci Rep. 2016;6:18631. https://doi.org/10.1038/srep18631 Erratum in; Corrigendum: ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci Rep. 2016;6:31940. https://doi.org/10.1038/srep31940   DOI
11 Marcek Chorvatova A, Kirchnerova J, Cagalinec M, Mateasik A, Chorvat D Jr. Spectrally and spatially resolved laser-induced photobleaching of endogenous flavin fluorescence in cardiac myocytes. Cytometry A. 2019;95:13-23. https://doi.org/10.1002/cyto.a.23591
12 Duong H, Han M. A multispectral led array for the reduction of background autofluorescence in brain tissue. J Neurosci Methods. 2013;220:46-54. https://doi.org/10.1016/j.jneumeth.2013.08.018   DOI
13 Kim SY, Cho JH, Murray E, Bakh N, Choi H, Ohn K, et al. Stochastic electrotransport selectively enhances the transport of highly electromobile molecules. Proc Natl Acad Sci USA. 2015;112:E6274-E6283. https://doi.org/10.1073/pnas.1510133112
14 Gradinaru V, Treweek J, Overton K, Deisseroth K. Hydrogel-tissue chemistry: principles and applications. Annu Rev Biophys. 2018;47:355-376. https://doi.org/10.1146/annurev-biophys-070317-032905   DOI
15 Song Y, Treanor D, Bulpitt AJ, Magee DR. 3d reconstruction of multiple stained histology images. J Pathol Inform. 2013;4(Suppl):7. https://doi.org/10.4103/2153-3539.109864
16 Abels E, Pantanowitz L. Current state of the regulatory trajectory for whole slide imaging devices in the USA. J Pathol Inform. 2017;8:23. https://doi.org/10.4103/jpi.jpi_11_17   DOI
17 Farahani N, Parwani AV, Pantanowitz L. Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol Lab Med Int. 2015;7:23-33. https://doi.org/10.2147/PLMI.S59826
18 Hammouda B. Temperature effect on the nanostructure of sds micelles in water. J Res Natl Inst Stan Technol. 2013;118:151-167. https://doi.org/10.6028/jres.118.008
19 Jensen KHR, Berg RW. Advances and perspectives in tissue clearing using clarity. J Chem Neuroanat. 2017;86:19-34. https://doi.org/10.1016/j.jchemneu.2017.07.005   DOI
20 Young PA, Clendenon SG, Byars JM, Dunn KW. The effects of refractive index heterogeneity within kidney tissue on multiphoton fluorescence excitation microscopy. J Microsc. 2011;242:148-156. https://doi.org/10.1111/j.1365-2818.2010.03448.x   DOI
21 Khimchenko A, Deyhle H, Schulz G, Schweighauser G, Hench J, Chicherova N, et al. Extending two-dimensional histology into the third dimension through conventional micro computed tomography. Neuroimage. 2016;139:26-36. https://doi.org/10.1016/j.neuroimage.2016.06.005   DOI
22 Marks DL, Chaney EJ, Boppart SA. Plastinated tissue samples as three-dimensional models for optical instrument characterization. Opt Express. 2008;16:16272-16283. https://doi.org/10.1364/oe.16.016272   DOI
23 Riederer BM. Plastination and its importance in teaching anatomy. Critical points for long-term preservation of human tissue. J Anat. 2014;224:309-315. https://doi.org/10.1111/joa.12056   DOI
24 Xu Z, Chapuis PH, Bokey L, Zhang M. Denonvilliers' fascia in men: a sheet plastination and confocal microscopy study of the prerectal space and the presence of an optimal anterior plane when mobilizing the rectum for cancer. Colorectal Dis. 2017;20:236-242. https://doi.org/10.1111/codi.13906   DOI
25 Silvestri L, Costantini I, Sacconi L, Pavone FS. Clearing of fixed tissue: a review from a microscopist's perspective. J Biomed Opt. 2016;21:081205. https://doi.org/10.1117/1.JBO.21.8.081205   DOI
26 Chung K, Wallace J, Kim SY, Kalyanasundaram S, Andalman AS, Davidson TJ, et al. Structural and molecular interrogation of intact biological systems. Nature. 2013;497:332-337. https://doi.org/10.1038/nature12107   DOI
27 Lai HM, Liu AK, Ng WL, DeFelice J, Lee WS, Li H, et al. Rationalisation and validation of an acrylamide-free procedure in threedimensional histological imaging. PLos One. 2016;11:E0158628. https://doi.org/10.1371/journal.pone.0158628
28 Hsueh B, Burns VM, Pauerstein P, Holzem K, Ye L, Engberg K, et al. Pathways to clinical CLARITY: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease. Sci Rep. 2017;7:5899. https://doi.org/10.1038/s41598-017-05614-4   DOI
29 Azaripour A, Lagerweij T, Scharfbillig C, Jadczak AE, Willershausen B, Van Noorden CJ. A survey of clearing techniques for 3D imaging of tissues with special reference to connective tissue. Prog Histochem Cytochem. 2016;51:9-23. https://doi.org/10.1016/j.proghi.2016.04.001   DOI
30 Mcmeekin TL, Groves ML, Wilensky M. Refractive indices of proteins in relation to amino acid composition and specific volume. Biochem Bioph Res Co. 1962;7:151-156. https://doi.org/10.1016/0006-291X(62)90165-1   DOI
31 Bolin FP, Preuss LE, Taylor RC, Ference RJ. Refractive-index of some mammalian-tissues using a fiber optic cladding method. Appl Optics. 1989;28:2297-2303. https://doi.org/10.1364/AO.28.002297   DOI
32 Theer P, Denk W. On the fundamental imaging-depth limit in two-photon microscopy. J Opt Soc Am A Opt Image Sci Vis. 2006;23:3139-3149. https://doi.org/10.1364/josaa.23.003139
33 Poguzhelskaya E, Artamonov D, Bolshakova A, Vlasova O, Bezprozvanny I. Simplified method to perform clarity imaging. Mol Neurodegener. 2014;9:19. https://doi.org/10.1186/1750-1326-9-19   DOI
34 Ravi SB, Bhat VM. Plastination: a novel, innovative teaching adjunct in oral pathology. J Oral Maxillofac Pathol. 2011;15:133-137. https://doi.org/10.4103/0973-029X.84475   DOI
35 Rich RM, Stankowska DL, Maliwal BP, Sorensen TJ, Laursen BW, Krishnamoorthy RR, et al. Elimination of autofluorescence background from fluorescence tissue images by use of time-gated detection and the AzaDiOxaTriAngulenium (ADOTA) fluorophore. Anal Bioanal Chem. 2013;405:2065-2075. https://doi.org/10.1007/s00216-012-6623-1   DOI
36 Jones PB, Rozkalne A, Meyer-Luehmann M, Spires-Jones TL, Makarova A, Kumar AT, et al. Two postprocessing techniques for the elimination of background autofluorescence for fluorescence lifetime imaging microscopy. J Biomed Opt. 2008;13:014008. https://doi.org/10.1117/1.2837169   DOI
37 Wadood AA, Jabbar A, Das N. Plastination of whole brain specimen and brain slices. J Ayub Med Coll Abbottabad. 2001;13:11-13.
38 Costa EC, Silva DN, Moreira AF, Correia IJ. Optical clearing methods: an overview of the techniques used for the imaging of 3D spheroids. Biotechnol Bioeng. 2019;116:2742-2763. https://doi.org/10.1002/bit.27105   DOI
39 Li L, Zhou Q, Voss TC, Quick KL, LaBarbera DV. High-throughput imaging: focusing in on drug discovery in 3D. Methods. 2016; 96:97-102. https://doi.org/ 10.1016/j.ymeth.2015.11.013   DOI
40 Durr NJ, Weisspfennig CT, Holfeld BA, Ben-Yakar A. Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues. J Biomed Opt. 2011;16:026008. https://doi.org/10.1117/1.3548646   DOI
41 Libard S, Cerjan D, Alafuzoff I. Characteristics of the tissue section that influence the staining outcome in immunohistochemistry. Histochem Cell Biol. 2019;151:91-96. https://doi.org/10.1007/s00418-018-1742-1   DOI
42 Seo J, Koo DJ, Kim SY. Chemical processing of brain tissues for large-volume, high-resolution optical imaging. In: Kao FJ, Keiser G, Gogoi A, editors. Advanced optical methods for brain imaging. Singapore: Springer; 2019. p295-334.
43 Marx V. Microscopy: seeing through tissue. Nat Methods. 2014;11:1209-1214. https://doi.org/10.1038/nmeth.3181   DOI
44 Hama H, Hioki H, Namiki K, Hoshida T, Kurokawa H, Ishidate F, et al. ScaleS: an optical clearing palette for biological imaging. Nat Neurosci. 2015;18:1518-1529. https://doi.org/10.1038/nn.4107   DOI
45 Gamble JT. A combination bleaching-clearing agent and its use in the processing of Spalteholz preparations. Stain Technol. 1945;20:127. https://doi.org/10.3109/10520294509107147
46 Jun YW, Kim HR, Reo YJ, Dai M, Ahn KH. Addressing the autofluorescence issue in deep tissue imaging by two-photon microscopy: the significance of far-red emitting dyes. Chem Sci. 2017;8:7696-7704. https://doi.org/10.1039/c7sc03362a   DOI
47 Schnell SA, Staines WA, Wessendorf MW. Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem. 1999;47:719-730. https://doi.org/10.1177/002215549904700601   DOI
48 Clancy B, Cauller LJ. Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J Neurosci Methods. 1998;83:97-102. https://doi.org/10.1016/s0165-0270(98)00066-1   DOI
49 Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896-910. https://doi.org/10.1016/j.cell.2014.10.010   DOI
50 Ariel P. A beginner's guide to tissue clearing. Int J Biochem Cell Biol. 2017;84:35-39. https://doi.org/10.1016/j.biocel.2016.12.009   DOI
51 Eisenstein M. Transparent tissues bring cells into focus for microscopy. Nature. 2018;564:147-149. https://doi.org/10.1038/d41586-018-07593-6   DOI
52 Steinke H, Wolff W. A modified spalteholz technique with preservation of the histology. Ann Anat. 2001;183:91-95. https://doi.org/10.1016/S0940-9602(01)80020-0   DOI
53 Babic A, Loftin IR, Stanislaw S, Wang M, Miller R, Warren SM, et al. The impact of pre-analytical processing on staining quality for H&E, dual hapten, dual color in situ hybridization and fluorescent in situ hybridization assays. Methods. 2010;52:287-300. https:// doi.org/10.1016/j.ymeth.2010.08.012   DOI
54 Yang B, Treweek JB, Kulkarni RP, Deverman BE, Chen CK, Lubeck E, et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell. 2014;158:945-958. https://doi.org/10.1016/j.cell.2014.07.017   DOI
55 Erturk A, Becker K, Jahrling N, Mauch CP, Hojer CD, Egen JG, et al. Three-dimensional imaging of solvent-cleared organs using 3disco. Nat Protoc. 2012;7:1983-1995. https://doi.org/10.1038/nprot.2012.119   DOI
56 Richardson DS, Lichtman JW. Clarifying tissue clearing. Cell. 2015;162:246-257. https://doi.org/10.1016/j.cell.2015.06.067   DOI
57 Tomer R, Ye L, Hsueh B, Deisseroth K. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc. 2014;9:1682-1697. https://doi.org/10.1038/nprot.2014.123   DOI
58 Vigouroux RJ, Belle M, Chedotal A. Neuroscience in the third dimension: shedding new light on the brain with tissue clearing. Mol Brain. 2017;10:33. https://doi.org/10.1186/s13041-017-0314-y
59 Ravikumar S, Surekha R, Thavarajah R. Mounting media: an overview. Journal of Dr. NTR University of Health Sciences. 2014;3:1-8. https://doi.org/10.4103/2277-8632.128479
60 Marmorstein AD, Marmorstein LY, Sakaguchi H, Hollyfield JG. Spectral profiling of autofluorescence associated with lipofuscin, Bruch's membrane, and sub-RPE deposits in normal and AMD eyes. Invest Ophthalmol Vis Sci. 2002;43:2435-2441
61 Katz ML, Robison WG Jr. What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies. Arch Gerontol Geriatr. 2002;34:169-184. https://doi.org/10.1016/s0167-4943(02)00005-5   DOI
62 Duong H, Han M. A multispectral LED array for the reduction of background autofluorescence in brain tissue. J Neurosci Methods. 2013;220:46-54. https://doi.org/10.1016/j.jneumeth.2013.08.018   DOI
63 Chorvat D Jr, Kirchnerova J, Cagalinec M, Smolka J, Mateasik A, Chorvatova A. Spectral unmixing of flavin autofluorescence components in cardiac myocytes. Biophys J. 2005;89:L55-57. https://doi.org/10.1529/biophysj.105.073866   DOI
64 Tokumasu F, Dvorak J. Development and application of quantum dots for immunocytochemistry of human erythrocytes. J Microsc. 2003;211:256-261. https://doi.org/10.1046/j.1365-2818.2003.01219.x   DOI
65 Magee D, Song Y, Gilbert S, Roberts N, Wijayathunga N, Wilcox R, et al. Histopathology in 3D: from three-dimensional reconstruction to multi-stain and multi-modal analysis. J Pathol Inform. 2015;6:6. https://doi.org/10.4103/2153-3539.151890   DOI
66 Tainaka K, Kuno A, Kubota SI, Murakami T, Ueda HR. Chemical principles in tissue clearing and staining protocols for wholebody cell profiling. Annu Rev Cell Dev Biol. 2016;32:713-741. https://doi.org/10.1146/annurev-cellbio-111315-125001   DOI
67 Rietdorf J, Stelzer EHK. Special optical elements. In: Pawley JB, editor. Handbook of biological confocal microscopy. 3rd ed. New York: Springer; 2006. p43-58.
68 Diaspro A, Federici F, Robello M. Influence of refractive-index mismatch in high-resolution three-dimensional confocal microscopy. Appl Opt. 2002;41:685-690. https://doi.org/10.1364/AO.41.000685   DOI
69 Hoyt LF. New table of the refractive index of pure glycerol at $20^{\circ}C$. Ind Eng Chem. 1934;26:329-332. https://doi.org/10.1021/ie50291a023   DOI
70 Masson A, Escande P, Frongia C, Clouvel G, Ducommun B, Lorenzo C. High-resolution in-depth imaging of optically cleared thick samples using an adaptive spim. Sci Rep. 2015;5:16898. https://doi.org/10.1038/srep16898   DOI
71 Potter KA, Simon JS, Velagapudi B, Capadona JR. Reduction of autofluorescence at the microelectrode-cortical tissue interface improves antibody detection. J Neurosci Methods. 2012;203:96-105. https://doi.org/10.1016/j.jneumeth.2011.09.024   DOI
72 Hayashi-Takanaka Y, Stasevich TJ, Kurumizaka H, Nozaki N, Kimura H. Evaluation of chemical fluorescent dyes as a protein conjugation partner for live cell imaging. PLos One. 2014;9:E106271. https://doi.org/10.1371/journal.pone.0106271
73 Baschong W, Suetterlin R, Laeng RH. Control of autofluorescence of archival formaldehyde-fixed, paraffin-embedded tissue in confocal laser scanning microscopy (CLSM). J Histochem Cytochem. 2001;49:1565-1572. https://doi.org/10.1177/002215540104901210
74 Shilova ON, Shilov ES, Deyev SM. The effect of trypan blue treatment on autofluorescence of fixed cells. Cytometry A. 2017;91:917-925. https://doi.org/10.1002/cyto.a.23199
75 Srivastava GK, Reinoso R, Singh AK, Fernandez-Bueno I, Hileeto D, Martino M, et al. Trypan blue staining method for quenching the autofluorescence of rpe cells for improving protein expression analysis. Exp Eye Res. 2011;93:956-962. https://doi.org/10.1016/j.exer.2011.07.002
76 Su W, Yang L, Luo X, Chen M, Liu J. Elimination of autofluorescence in archival formaldehyde-fixed, paraffin-embedded bone marrow biopsies. Arch Pathol Lab Med. 2019;143:362-369. https://doi.org/10.5858/arpa.2017-0480-OA
77 Neumann M, Gabel D. Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem. 2002;50:437-439. https://doi.org/10.1177/002215540205000315
78 Liu PY, Chin LK, Ser W, Chen HF, Hsieh CM, Lee CH, et al. Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip. 2016;16:634-644. https://doi.org/10.1039/c5lc01445j   DOI
79 Sylwestrak EL, Rajasethupathy P, Wright MA, Jaffe A, Deisseroth K. Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell. 2016;164:792-804. https://doi.org/10.1016/j.cell.2016.01.038   DOI
80 Pollock JD, Wu DY, Satterlee JS. Molecular neuroanatomy: A generation of progress. Trends Neurosci. 2014;37:106-123. https://doi.org/10.1016/j.tins.2013.11.001   DOI
81 Zakiewicz IM, Majka P, Wojcik DK, Bjaalie JG, Leergaard TB. Three-dimensional histology volume reconstruction of axonal tract tracing data: Exploring topographical organization in subcortical projections from rat barrel cortex. PLos One. 2015; 10:E0137571. https://doi.org/10.1371/journal.pone.0137571
82 Ando K, Laborde Q, Brion JP, Duyckaerts C. 3D imaging in the postmortem human brain with CLARITY and CUBIC. Handb Clin Neurol. 2018;150:303-317. https://doi.org/10.1016/B978-0-444-63639-3.00021-9
83 Rossetti BJ, Wilbert SA, Mark Welch JL, Borisy GG, Nagy JG. Semi-blind sparse affine spectral unmixing of autofluorescencecontaminated micrographs. Bioinformatics. 2019;pii:btz674. https://doi.org/10.1093/bioinformatics/btz674